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Preface

The rapid evolution of large language models (LLMs) has profoundly reshaped
artificial intelligence research and application. Within this transformative
landscape, DeepSeek has emerged as a notable force, delivering not only
cutting-edge models but also embracing a philosophy of openness and collabo-
ration. The release of DeepSeeks family of modelsranging from DeepSeek-V3
to the reasoning-focused DeepSeek-R 1has provided researchers, developers,
and practitioners with unprecedented opportunities to study, improve upon,
and apply state-of-the-art language models without the constraints of closed
ecosystems.

This book is written for readers who want to understand, replicate, and po-
tentially extend the techniques used to build these influential models. It is
neither a high-level survey nor a theoretical exploration of language modeling
in general, but rather a focused and technically detailed guide to the practical
methodologies underlying the DeepSeek models. By systematically unpack-
ing DeepSeeks approaches to pre-training data curation, architecture design,
training pipeline engineering, and evaluation strategies, the book aims to pro-
vide a clear and reproducible pathway for those who wish to replicate these
techniques within their own projects.

Importantly, this book is not authored by the DeepSeek team, nor does it have
any formal affiliation with DeepSeek. All content is derived from publicly
available papers, code releases, benchmark results, and materials found in
open-source repositories and the broader research literature. While every ef-
fort has been made to maintain accuracy and clarity, any errors or misinterpre-
tations are solely the responsibility of the author.

The spirit of this book aligns closely with the ethos of open-source Al: to lower
barriers to knowledge, foster collaborative learning, and accelerate progress
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through transparency. In that spirit, readers are encouraged not only to study
the contents of this book, but to challenge, refine, and improve upon the tech-
niques presented here. The ultimate goal is not simply to replicate existing
work, but to empower researchers and engineers to push the field forwardde-
veloping new models, improving efficiency, and broadening the application
of advanced Al techniques.

The author hopes that this book will serve as both a practical guide and a
source of inspiration for Al researchers, developers, and technology leaders
who are passionate about open, reproducible, and responsible advancement
of language model technology.

Let this be both a map and an invitationto explore, to learn, and to contribute
to the future of open Al



Chapter 1

Introduction

This chapter introduces DeepSeek and its family of language models, outlin-
ing their development and positioning within the broader landscape of open-
source AL It highlights the motivations behind these releases and their tech-
nical significance, particularly in the areas of reasoning and efficiency. The
chapter also examines the broader impacts of DeepSeeks open-source strat-
egy, including its influence on the research community and industry adoption.

1.1 Overview of DeepSeek and its AI Models

DeepSeek has rapidly ascended to become a prominent and influential entity in
contemporary artificial intelligence research, particularly within the dynamic
field of large language models (LLMs). Founded in July 2023 amidst a pe-
riod of significant global technological evolution and evolving computational
paradigms, DeepSeeks trajectory is a compelling narrative of technical inno-
vation interwoven with the challenges of navigating geopolitical and resource-
based constraints. This section provides a historical and contextual backdrop
to the emergence of DeepSeeks pioneering models, establishing a founda-
tional understanding before progressing to the detailed technical explorations
in subsequent chapters.

The conceptual origins of DeepSeek can be traced to an era characterized by
the rapid proliferation of deep learning methodologies and an escalating de-
mand for Al systems adept at natural language understanding and generation.
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CHAPTER 1. INTRODUCTION

The early 2010s marked a transformative phase in Al research, as neural net-
work architectures began to demonstrably outperform traditional techniques
across diverse applications, ranging from sophisticated image recognition to
nuanced language translation. The advent of transformer models marked a
pivotal moment, revolutionizing the natural language processing (NLP) land-
scape and establishing new performance benchmarks.

During this transformative period, numerous pioneering organizations and re-
search institutions embarked on explorations into the potential of model scal-
ing. However, this pursuit of scale was accompanied by substantial escalations
in both computational expenditure and energy consumption. Concurrently,
geopolitical factors, notably trade restrictions and constrained access to ad-
vanced semiconductor technologies, particularly high-performance GPUs, be-
gan to exert a considerable influence on the trajectory of Al research. These
multifaceted challenges fostered a unique environment where the development
of large-scale models necessitated innovative strategies to mitigate unsustain-
able cost implications.

It was within this complex and evolving environment that DeepSeek was estab-
lished. Founded in July 2023 by Liang Wenfeng—an entrepreneur with a vi-
sionary approach and extensive experience in Al-driven financial trading—the
company was conceived from a recognized need for efficient and economically
viable Al solutions. DeepSeek’s genesis was intrinsically linked to its parent
hedge fund, which had already effectively harnessed the capabilities of GPU-
accelerated deep learning for real-time, high-stakes decision-making within
financial markets since 2016. This strategic pivot from algorithmic trading to-
wards broader Al research was motivated by the realization that the methodolo-
gies refined in the demanding context of financial trading—particularly those
emphasizing rapid data processing and resource optimization—could be ef-
fectively adapted to address wider challenges in natural language processing.

DeepSeek s foundational experience in the financial sector profoundly shaped
its approach to model development. The high-pressure milieu of stock trad-
ing, where decision-making must occur in sub-second intervals, necessitates
the ability to efficiently process and analyze vast datasets. DeepSeeks early
systems effectively utilized GPU clusters to discern market trends and execute
trades based on sophisticated deep learning models. These initial endeavors
provided invaluable insights into the scalability of neural network architec-
tures and the critical importance of resource optimization—lessons that would
become foundational to the development of its advanced LLMs.
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As DeepSeek strategically shifted its primary focus from financial algorithms
to general-purpose language models, it retained a core philosophy of
efficiency and innovation. The challenges posed by restricted access to
advanced hardware, compounded by international limitations on cutting-edge
chipsets, necessitated a departure from conventional model training
paradigms.  DeepSeeks team of engineers and researchers were thus
compelled to re-evaluate traditional architectures and explore novel training
methodologies. This strategic imperative aimed to facilitate the development
of large-scale models without a commensurate and unsustainable increase in
computational demands.

Technological and Industrial Influences

The period preceding DeepSeeks establishment was characterized by signifi-
cant technological advancements and industrial shifts. The Al research com-
munity celebrated breakthroughs such as transformer architectures and self-
supervised learning techniques, which empowered models to learn from ex-
pansive unstructured datasets. Simultaneously, leading industry entities were
confronting the practical challenges of scaling these models to unprecedented
dimensions. The inherent trade-offs between model size, training expendi-
tures, and inference velocity became a central point of discussion and strategic
consideration.

Within this dynamic landscape, DeepSeek strategically positioned itself as a
disruptive innovator. Rather than directly competing with established orga-
nizations possessing substantial resources, DeepSeek adopted a strategic ap-
proach of doing more with less. By prioritizing efficiency and pioneering inno-
vative architectures, the company aimed to develop models capable of achiev-
ing performance levels comparable to larger, more resource-intensive systems,
while concurrently managing training costs effectively. This strategic orienta-
tion not only enabled DeepSeek to navigate the hardware constraints imposed
by global supply chain complexities but also to pioneer novel methodologies
that would subsequently influence the broader Al research community.

Key Milestones in the Development of DeepSeek Models

Since its inception in July 2023, DeepSeek has achieved a series of signifi-
cant milestones that underscore its rapid advancement within the field of Al
research. These milestones not only mark critical points of technical progress
but also exemplify the companys dedication to transparency and collaborative
engagement with the wider research community.
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Early Experiments and Proof of Concept

Prior to the public unveiling of its advanced language models, DeepSeek made
substantial investments in exploratory research initiatives. Initial experiments
were focused on adapting existing transformer architectures to operate effec-
tively within the limitations imposed by restricted hardware availability. Re-
searchers investigated techniques such as parameter sharing, dynamic routing,
and selective activation of network components. These foundational studies
provided the essential groundwork for the adoption of the Mixture-of-Experts
(MoE) approach—a pivotal architectural element in DeepSeeks model design.
The MoE strategy enabled the company to achieve significant model scaling
while effectively managing inference costs.

Public Model Releases and Evolution

DeepSecek s first major release, DeepSeek -Coder (January 2024), introduced
code-specialized models trained on 2 trillion tokens across 87 programming
languages. This established DeepSeeks credentials as a leader in code intel-
ligence, directly competing with proprietary offerings like Codex. By June
2024, DeepSeek -Coder-V2 expanded this work with a 236 billion parameter
Mixture-of-Experts model, increasing language coverage to 338 programming
languages and integrating strong mathematical reasoning capabilities.

In December 2024, DeepSeek -V3 marked DeepSeeks entry into general-
purpose LLM development. This 671 billion parameter MoE model, trained
on 14.8 trillion tokens, introduced innovations such as Multi-Token Predic-
tion and Multi-Head Latent Attention, extending its effective context length to
128K tokens while maintaining efficiency.

January 2025 saw the launch of DeepSeek -R1, a reasoning-optimized model
trained via large-scale reinforcement learning (RL) using Group Relative Pol-
icy Optimization (GRPO). With superior performance in mathematical reason-
ing (solving 79.8% of AIME 2024 problems) and competitive programming
tasks, DeepSeek-R1 demonstrated that advanced reasoning abilities could
emerge directly from well-targeted RL incentives.

Distillation for Accessibility

To make these breakthroughs broadly accessible, DeepSeek subsequently dis-
tilled DeepSeek-R1 into smaller models, ranging from 1.5 billion to 70 billion
parameters. These distilled models retained exceptional reasoning strength,
outperforming all comparable open-source models in both reasoning and code
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generation benchmarks.

Ongoing Commitment to Efficiency and Transparency

Throughout these milestones, DeepSeek consistently upheld its foundational
philosophy: scale wisely, prioritize efficiency, and remain transparent. Each
major release has been accompanied by open-weight model distributions, de-
tailed technical reports, and collaborative benchmarking efforts. This commit-
ment to openness has not only accelerated community adoption but also rein-
forced DeepSeeks reputation as a responsible company in Al development.

1.2 Impacts of DeepSeek’s Model Releases

The introduction of DeepSeek’s Al models has had profound and multifaceted
effects across technological, economic, and geopolitical domains. This sec-
tion examines these impacts, highlighting the responses from industry stake-
holders, market dynamics, and international relations.

Technological Disruption and Industry Response: DeepSeek’s release of
cost-effective, open-source Al models has challenged traditional Al develop-
ment paradigms. By demonstrating that high-performance Al can be achieved
without extensive computational resources, DeepSeek has prompted industry
leaders to reassess their strategies. Notably, advanced reasoning models like
DeepSeek’s R1 require significantly more computational power, underscoring
the escalating demand for high-performance computing in AI applications.

Market Volatility and Economic Repercussions: The launch of DeepSeek’s
models, particularly the R1 chatbot, triggered substantial market reactions.
Major technology companies experienced notable stock declines; for instance,
Nvidia’s shares dropped by approximately 17% following the release, marking
a significant loss in market capitalization. This selloff extended to other tech
giants, reflecting investor sensitivity to advancements in Al technology and
the potential for disruptive innovation.

Geopolitical Tensions and Strategic Responses: DeepSeek’s advancements
have intensified geopolitical considerations, particularly concerning U.S.-
China technological competition. The Chinese government has advised its
Al experts to avoid traveling to the United States due to security concerns,
reflecting apprehensions about safeguarding technological advancements and
intellectual property. This development underscores the strategic importance
of Al in national security and international relations.

7
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Industry Adaptations and Strategic Shifts: In response to DeepSeek’s in-
novations, companies like Microsoft have reevaluated their infrastructure in-
vestments. Reports indicate that Microsoft canceled leases on large data cen-
ters, reflecting concerns about potential oversupply and the implications of
DeepSeek’s cost-effective models on massive Al expenditures. Despite these
adjustments, Microsoft maintains a commitment to substantial infrastructure
spending, indicating a strategic reassessment rather than a reduction in Al
ambitions.

Collaborative Potential and Open-Source Dynamics: DeepSeek’s open-
source approach has fostered discussions about global collaboration in Al
development. By making its model weights freely accessible, DeepSeek has
enabled a broader range of stakeholders to benefit from advanced Al technolo-
gies, potentially accelerating innovation and application across various sectors.
This strategy contrasts with proprietary models and highlights the potential of
open-source frameworks to democratize access to cutting-edge Al tools.

Investor Sentiment and Future Outlook: The emergence of DeepSeek has
prompted analysts to reassess the Al investment landscape. While initial reac-
tions included significant selloffs, some experts suggest that DeepSeek’s ad-
vancements could ultimately benefit the broader Al market by spurring compe-
tition and innovation. For instance, companies like Nvidia may see increased
demand for their high-performance computing products as Al applications
become more sophisticated.

National Initiatives and Policy Implications: The success of DeepSeek has
been perceived as a challenge to the global dominance of American Al ini-
tiatives. This development has prompted discussions at the highest levels of
government, with U.S. leadership acknowledging the need for accelerated Al
development to maintain technological leadership. Such acknowledgments
may lead to increased funding for Al research and development, as well as the
formulation of policies aimed at fostering innovation and addressing compet-
itive pressures.

DeepSeek ’s model releases have acted as a catalyst for significant shifts in the
Al landscape, influencing technological strategies, market dynamics, geopolit-
ical relations, and industry practices. The ripple effects of these developments
continue to shape the trajectory of artificial intelligence on a global scale.



Chapter 2

Fundamentals of Large
Language Models

This chapter covers the essential deep learning techniques required to
build large language models, focusing on the transformer architecture,
pre-training methods, and distributed training infrastructure. It explains
how self-supervised pre-training, attention mechanisms, and optimization
techniques work together to scale language models effectively. Finally, it
introduces the core evaluation metrics used to assess model performance
during and after training.

2.1 Transformer Architecture

The transformer architecture has become the backbone of modern natural lan-
guage processing and large language models such as DeepSeek. By replac-
ing sequential models like recurrent neural networks (RNNs) and long short-
term memory networks (LSTMs) with a mechanism that processes all tokens
simultaneously, transformers have enabled significant improvements in both
training efficiency and performance.

Traditional sequence models process input one token at a time, which can
hinder the models ability to capture long-range dependencies and slow down
training considerably. The transformer architecture was introduced to address
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these limitations. Instead of processing tokens sequentially, transformers use a
self-attention mechanism that allows every token in a sequence to interact with
every other token concurrently. This parallel processing not only accelerates
training but also improves the models capacity to learn relationships over long
distances in text.

Tokenization and Embeddings

Before any model can process text, the raw data must be converted into a
numerical format. This transformation occurs in two steps: tokenization and
embedding.

Tokenization is the process of breaking down raw text into smaller units
called tokens. Tokens may represent words, subwords, or even characters.
DeepSeek and many other modern language models typically employ subword
tokenization methodssuch as Byte-Pair Encoding (BPE) or SentencePiecebe-
cause these techniques provide a balanced approach. Common words can be
treated as single tokens, while less frequent or compound words are split into
smaller, meaningful pieces. For example, the word “unbelievable” might be
tokenized into “un”, “believ”, and “able.” This not only reduces the overall
vocabulary size but also improves the models ability to generalize from known
subcomponents.

Once tokenization is complete, each token must be converted into a high-
dimensional vector, a process called embedding. Suppose the vocabulary
contains V' tokens, and each token is represented by a vector of dimension
d. The embedding matrix E is of size V' x d, where each row corresponds to
a tokens vector representation. For any token ¢, its embedding is given by

x; = Et].

This equation indicates that each token ¢ is mapped to a vector x; from the
matrix E. These embeddings capture semantic relationships between tokens
and serve as the foundation for all subsequent computations in the transformer.

Positional Encodings

In a transformer, tokens are processed in parallel rather than one-by-one,
which means the model does not naturally know the order of the tokens. Posi-
tional encodings provide a way to inject this order information into the model
by adding a unique, position-dependent vector to each token’s embedding.

Consider reading a sentence with its words in a random orderthe meaning

10
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would be lost because grammar and syntax depend on word order. Positional
encodings ensure that each token’s position in the sequence is taken into ac-
count.

A widely used method for creating positional encodings is based on sinusoidal
functions. In the original transformer model, the positional encoding for a
token at position pos is defined by the following equations:

. pos pos
PE(,os0n =sin| ——7 |, PEos2i =cos | —— | -
(pos,2:) (10000%) (pos,2é-+1) (10000%)

Here is what each component means:

* pos: This is the position of the token in the sequence (starting from O
or1).

» ¢: This is the index of the dimension within the positional encoding
vector.

* d: This represents the dimensionality of the token embeddings, mean-
ing the length of the vector that represents each token. For example, if
d = 512, each token is represented by a 512-dimensional vector.

¢ Sine and Cosine Functions:

— The sine function is applied to the even-indexed dimensions (0, 2,
4,...).

— The cosine function is applied to the odd-indexed dimensions (1,
3,5,...).

* Scaling Factor 100007 : This factor scales the position pos so that dif-
ferent dimensions capture information at different frequencies. Lower
dimensions correspond to higher frequencies (capturing fine-grained
positional differences), while higher dimensions correspond to lower
frequencies (capturing broader positional trends).

By adding these sinusoidal positional encodings to the token embeddings

Z; = X¢ + P,

11
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each token’s final representation, z;, carries both its semantic information
(from x;) and its position within the sequence (from p;). This combined infor-
mation allows the transformer to effectively understand and process the order
of words, which is critical for tasks like translation, summarization, and text
generation.

The final input representation for a token is the sum of its embedding and its
positional encoding:

Z; = X + Pt

This simple additive combination means that each tokens vector now carries
both its semantic meaning (from the embedding) and its positional context
(from the positional encoding).

Self-Attention Mechanism

The self-attention mechanism is a central component of the transformer archi-
tecture that enables the model to dynamically capture dependencies between
tokens in a sequence. Unlike traditional models that process tokens sequen-
tially, self-attention allows each token to attend to all other tokens simulta-
neously, assigning different weights based on their relevance. Below is an
expanded explanation of this process.

1. Projection into Queries, Keys, and Values

For each token in the input sequence, the model generates three distinct vec-
tors: the query (Q), the key (K), and the value (V'). Suppose we have an input
matrix X of shape N x d, where

e N is the number of tokens in the sequence.

* d is the embedding dimension (i.e., the length of each token’s vector).

To compute @), K, and V, the input X is multiplied by three different weight
matrices, which are learned during training:

Q=XWe K=xwF v=xwV
o WX WX and WV These are the learned weight matrices. They trans-
form the original embeddings into new spaces where the self-attention

mechanism can operate effectively.

12



2.1. TRANSFORMER ARCHITECTURE

* Query (@) Vector: For a given token, the query vector represents what
information it is seeking from the rest of the sequence.

» Key (K) Vector: The key vector of a token represents its content in a
way that allows it to be matched with queries from other tokens.

e Value (V) Vector: The value vector contains the actual information
of the token that will be aggregated based on the computed attention
scores.

For example, if token i is represented by x; in X, then

q=xW k=xW5 v=xW"

This step lays the groundwork for comparing tokens with one another in the
next stages.

2. Calculating Attention Scores

Once we have @, K, and V for all tokens, the next step is to calculate how
much attention each token should pay to every other token. This is done by
computing the dot product between the query vector of one token and the key
vectors of all tokens.

For tokens 7 and 7, the unscaled attention score is given by

Score(i, j) = q; - k;.

However, these dot products can result in large numbers, especially when the
dimensionality d (or more precisely, d; the dimension of the key vectors) is
high. To control the scale and help stabilize the gradients during training, the
score is divided by the square root of dj:

q; -k
Vi,

Scaled Score(i,j) =

Here,

¢ dg: This is the dimensionality of the key vectors. Often in practice, dy,
is set equal to d or is a fraction of d when using multi-head attention.

13
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Scaling helps prevent the softmax function (applied in the next step) from
having extremely small gradients when the scores are large.

3. Softmax and Weighted Sum

To convert the scaled scores into a probability distribution that indicates how
much attention each token should receive, the softmax function is applied to
each set of scores:

q - kj)
;7 = softmax .
Y ( Vg

This operation is applied row-wise, meaning for each token ¢, the softmax
produces a set of weights {1, a2, ..., a;n} that sum to 1. These weights
indicate the relevance of each token j to token i.

Finally, these attention weights are used to compute a weighted sum of the
value vectors V:

. QKT
Attention(Q, K, V') = softmax V.
Vdy

Here,

QKT This matrix multiplication computes the dot product between
each query and each key, resulting in a matrix of scores.

T
. %: The scaling is applied element-wise to ensure the values remain

manageable.

T
* softmax ( %): Softmax is applied to each row, turning the scores

into attention weights.

* Multiplying by V': The attention weights are used to take a weighted
sum of the value vectors, resulting in a new representation for each token
that is enriched with contextual information from the entire sequence.

This weighted sum allows each token to integrate information from all other
tokens, with the contribution of each token modulated by how relevant it is to
the current token.

To recap:

14



2.1. TRANSFORMER ARCHITECTURE

1. Projection: Each token’s embedding is transformed into query, key,
and value vectors using learned matrices.

2. Score Calculation: The dot product between the query and key vectors
determines the relevance of tokens, and the scores are scaled to keep
values stable.

3. Normalization and Aggregation: The softmax function converts these
scores into a probability distribution, which is then used to compute a
weighted sum of the value vectors. This produces a contextually en-
riched representation for each token.

The self-attention mechanism, by allowing each token to consider every other
token in the sequence, is what empowers transformers to capture complex,
long-range dependencies in language. This dynamic process of attending to
different parts of the input is a key reason why transformer-based models like
DeepSeek have achieved such remarkable success in various natural language
processing tasks.

Multi-Head Attention

Multi-head attention builds upon the self-attention mechanism by allowing the
model to capture different aspects of relationships between tokens simultane-
ously. Instead of performing a single self-attention calculation on the entire
input, the input is split into several heads, with each head processing a distinct
portion of the embedding. This design enables the model to attend to various
features such as syntactic patterns, semantic meanings, or even positional nu-
ances in parallel.

Lets break down the process:

1. Splitting the Input into Multiple Heads: The input matrix X (of shape
N x d, where N is the number of tokens and d is the embedding dimension)
is first projected into three matricesqueries (Q)), keys (K), and values (V')using
learned weight matrices, just as in self-attention:

Q=XW?e K=xwk v=xw".
To create multiple heads, these projected matrices are split along the embed-
ding dimension into h smaller matrices. Each head will then have dimensions

Nx%.
1

15
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2. Independent Attention Computation per Head: For each head ¢, the scaled
dot-product attention is computed independently:

head; = Attention(Q;, K;, V;) = softmax <Q1KZT> Vi
(2N (2] 1y V1) T \/(Tk 7

where Q;, K;, and V; are the query, key, and value matrices for head ¢, and
dr, = % is the dimensionality of each heads key vectors. This independent
computation allows each head to focus on different parts or patterns within
the data.

3. Concatenation and Final Projection: The outputs from all heads are then
concatenated along the feature dimension to form a single matrix:

Concat(heady, . . ., heady,).

This concatenated matrix is projected back to the original dimension d using
a final weight matrix W °:

MultiHead(X ) = Concat(heady, . . ., head;, )W ©°.

The final projection blends the information captured by each head into a uni-
fied representation that can be passed to subsequent layers.

Diagram: Multi-Head Attention

16
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Input Sequence

A

Key Projection
Y A Y

Split into Heads Split into Heads Split into Heads

\
Scaled Dot-Product Attention @

Query Projection Value Projection

-

)

A

A
Concatenate Heads

Y
Final Linear Projection
Y

Output Sequence

Figure 2.1: Multi-head attention: The input sequence is projected into queries,
keys, and values, split into multiple heads, processed in parallel via scaled
dot-product attention, concatenated, and finally projected back to the original
dimensionality.

This diagram visually outlines the steps of multi-head attention, showing how
the input is transformed into multiple attention outputs that are then merged
into a single comprehensive representation.

Feedforward Networks and Residual Connections

After the multi-head attention layer, each transformer layer includes a feedfor-
ward network (FFN) and employs residual connections combined with layer
normalization to further process the token representations and maintain stabil-
ity during training.

Feedforward Network Structure

17
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The feedforward network is applied to each token independently and is respon-
sible for adding non-linearity to the model. It typically consists of two linear
transformations with a non-linear activation function between them. The struc-
ture can be summarized by the following equation:

FFN(I‘) = RCLU(JJWl + bl)Wg + bo.
Here is what each component represents:

» z: The input vector for a token.
e Wj and Wy: Learned weight matrices that transform the input.

¢ by and bsy: Bias vectors that are added after each linear transformation.

ReLU Activation: The Rectified Linear Unit (ReLU) introduces non-
linearity, enabling the network to capture complex patterns.

This two-layer structure allows the network to transform the token representa-
tions into a richer, more abstract space, further enhancing the model’s under-
standing of the data.

Residual Connections and Layer Normalization

Deep neural networks, including transformers, can suffer from issues like van-
ishing gradients, which make training difficult as the number of layers in-
creases. Residual connections help address these problems by allowing the
original input of a layer to be added directly to its output. This “skip connec-
tion” ensures that important information is preserved throughout the network
and facilitates the flow of gradients during backpropagation.

For the multi-head attention sublayer, the output is combined with the original
input using a residual connection and then normalized:

Y = LayerNorm(X + MultiHead(X)).

Similarly, after the feedforward network, the residual connection is applied:

Z = LayerNorm (Y + FFN(Y)).

In these equations:
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e X: The input to the sublayer (either the output from the previous layer
or the output of the multi-head attention).

¢ Y: The intermediate output after the multi-head attention and before
the feedforward network.

e LayerNorm(-): Layer normalization, which scales and shifts the
summed outputs to ensure that the data’s distribution remains
consistent throughout the network.

Layer normalization is critical because it stabilizes the learning process and
allows for deeper networks without suffering from internal covariate shift.

Architectural Variants: Encoder-Decoder and Decoder-Only

Transformers can be adapted for different tasks by modifying their overall
structure. Two common configurations are the encoder-decoder architecture
and the decoder-only architecture.

Encoder-Decoder Architecture: The encoder-decoder model is used primarily
for sequence-to-sequence tasks, such as machine translation. In this setup:

* Encoder: Processes the input sequence to produce a contextualized rep-
resentation of each token.

* Decoder: Uses the encoder’s output along with its own self-attention
mechanism to generate the output sequence.

This architecture is effective because the encoder thoroughly understands the
input, and the decoder leverages this information to produce relevant and co-
herent outputs.

Decoder-Only Architecture: For tasks like language modeling and text gen-
eration, a decoder-only architecture is typically used. In this configuration,
the model predicts the next token in a sequence based solely on the tokens
generated so far:

p(Tiq1 \ L1, T2, .., Tt).

To prevent the model from accessing future tokens during training, a causal
(or triangular) mask is applied. This mask sets the attention scores for future
tokens to zero:
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0 if 7 > 1,
Wi =
Y w;; otherwise.

This ensures that the prediction for token x;; depends only on the tokens x
to x4, maintaining the autoregressive property of language modeling.

Together, multi-head attention, feedforward networks, residual connections,
and careful architectural design form the backbone of transformer models.
These components work in concert to enable transformers to learn rich, com-
plex representations of language, making them highly effective for a variety
of natural language processing tasks.

Bridging Theory and Practical Applications

While the mathematical formulations and architectural details provide a strong
theoretical foundation, practical implementations of transformers—such as
DeepSeek—require additional considerations.

Efficiency and Scalability: One of the main challenges with self-attention is
its quadratic complexity with respect to sequence length. As the number of to-
kens increases, the computational resources required can become prohibitive.
To address this, researchers have proposed several strategies:

* Sparse Attention: Limiting the attention mechanism to a subset of to-
kens to reduce computational load.

¢ Low-Rank Approximations: Approximating the attention matrices to
lower the dimensionality.

* Efficient Transformer Variants: Architectures such as Longformer
or Performer introduce modifications specifically designed to handle
longer sequences without sacrificing performance.

Normalization and Stability: The use of layer normalization is critical for
maintaining training stability. Some models experiment with alternative nor-
malization strategies, such as pre-norm configurations (applying normaliza-
tion before the sublayer) rather than post-norm. These choices can affect
convergence speed and overall model performance, and are active areas of
research.

Positional Encoding Alternatives: Although sinusoidal positional encodings
are widely used due to their simplicity and deterministic nature, alternative ap-
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proaches have emerged. For example, rotary positional embeddings (RoPE)
integrate positional information in a way that can be more flexible and may
offer performance benefits in certain contexts. Understanding these alterna-
tives allows practitioners to make informed decisions based on the specific
requirements of their application.

Real-World Applications of Transformers

Transformers have been applied successfully across a wide range of natural
language processing tasks, demonstrating the versatility of the architecture:

* Machine Translation: Encoder-decoder transformers are highly effec-
tive at converting text from one language to another by first understand-
ing the source language and then generating a fluent translation.

* Text Summarization: By leveraging long-range dependencies, trans-
formers can produce coherent and concise summaries of long docu-
ments.

¢ Chatbots and Conversational AI: Decoder-only models, trained on
large conversational datasets, are capable of generating contextually rel-
evant and engaging responses.

* Content Generation: Whether it is creative writing or code generation,
transformers have demonstrated a remarkable ability to generate human-
like text based on a given prompt.

The insights from transformer architectures have also led to the development
of advanced techniques in transfer learning, where models pre-trained on vast
corpora are fine-tuned for specific tasks with minimal additional training.

Transformers represent a significant evolution in the design of neural net-
works for natural language processing. By combining tokenization, embed-
dings, positional encodings, self-attention, multi-head attention, and feedfor-
ward networks with residual connections and normalization techniques, the
transformer architecture provides a robust framework for understanding and
generating language.

In summary:

* Tokenization and Embeddings: Convert raw text into meaningful vec-
tor representations.

21



CHAPTER 2.  FUNDAMENTALS OF LARGE LANGUAGE MODELS

* Positional Encodings: Integrate order information using deterministic
functions.

* Self-Attention: Allow each token to dynamically weigh the influence
of every other token in the sequence.

e Multi-Head Attention: Capture diverse relationships by processing
multiple attention heads in parallel.

¢ Feedforward Networks and Residual Connections: Enhance feature
representations and stabilize deep network training.

* Architectural Variants: Adapt the transformer design to tasks like
translation (encoder-decoder) or language modeling (decoder-only) by
appropriate modifications such as causal masking.

Understanding these components and their mathematical foundations not only
demystifies how transformers work but also provides valuable insights into
the practical challenges and solutions in modern natural language processing
systems.

2.2 Pre-training Techniques

Pre-training is the phase during which large language models (LLMs) build a
broad understanding of language, code, reasoning, and various types of textual
data. Unlike supervised learning, where models learn from labeled examples,
pre-training for language models uses self-supervised learninga method that
creates training signals directly from the structure of the data itself. This ex-
planation is designed to help intermediate-level readers understand not only
the how but also the why behind these techniques.

Self-Supervised Pre-training. In self-supervised learning, the model is
trained on raw text without any externally provided labels. Instead of relying
on manually annotated data, the model generates its own training targets from
the text. For example, by removing or masking parts of the text and asking
the model to predict the missing pieces, the model learns to understand con-
text, grammar, and semantics. This method allows the use of vast amounts
of unannotated dataranging from books and websites to code repositories and
scientific articleswhich is crucial for building models with general language
competence.
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The strength of self-supervised pre-training lies in its ability to scale. By pro-
cessing billions of sentences, the model gradually internalizes not only basic
language rules but also more subtle patterns such as reasoning structures, cul-
tural references, and domain-specific knowledge. This broad base of learning
then serves as a foundation when the model is later fine-tuned for specific
tasks.

Causal Language Modeling (CLM). A common self-supervised objective
for language models is causal language modeling (CLM). In CLM, the
model is trained to predict each token in a sequence based only on the to-
kens that precede it. Mathematically, the training objective is to maximize the
probability:

T

Hp(xt | z1, @, ..., 1)

t=1
This formulation enforces a strict left-to-right order, similar to how we nat-
urally write and read text. During training, the model sees a sequence such
as:

Tokens: [The, cat, sat, on, the, mat]

It then learns to predict each token from its preceding context:
p(cat | The), p(sat | The, cat),

To ensure that each token only sees its leftward context during training, a tri-
angular attention mask is used. This mask restricts the models attention such
that token x; can only consider tokens x; through z; (including itself), as
illustrated below:

1.0 0 O
1 1 0 O
1 11 O

This causal constraint not only ensures the model learns in a natural, sequential
manner but also allows it to generate text coherently during inferencemimick-
ing the process of writing.

Why CLM Matters. Causal language modeling is particularly effective for
tasks that involve text generation. Whether it is writing code, composing
emails, or generating creative stories, the autoregressive nature of CLM sup-
ports the step-by-step generation of coherent and contextually relevant text.
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For models like DeepSeek-R1, this means that each new word is generated
based solely on what has come before, allowing the model to maintain a logi-
cal and fluid narrative as it processes longer contexts.

Data Preparation: Composition, Cleaning, and Formatting. Even the
most advanced training algorithms cannot compensate for poor data quality.
The pre-training data must be diverse, high-quality, and carefully curated to
provide the model with a rich learning experience.

Data Composition. A robust pre-training corpus is assembled from a variety
of sources. Typical components include:

¢ Web Text: Data from Wikipedia, news sites, forums, and blogs.

* Books: Both public domain and licensed collections that cover a wide
range of topics.

¢ Code Repositories: Open-source projects from platforms like GitHub.
* Scientific Papers: Technical reports, preprints from ArXiv or PubMed.

¢ Instructional Text: Tutorials, documentation, and other forms of edu-
cational material.

The diversity of the data ensures that the model learns not only the general
structure of language but also domain-specific knowledgevital for tasks like
code generation and technical problem-solving.

Data Cleaning and Deduplication. Raw data collected from the web is often
noisy and redundant. Inaccuracies, spam, and duplicate content can harm
the models ability to generalize. Therefore, several cleaning techniques are
applied:

* Duplicate Removal: Techniques like minhash and Jaccard similarity
are used to detect and remove near-duplicate documents. This prevents
the model from overfitting to redundant content.

* Spam and Boilerplate Filtering: Irrelevant or low-quality textsuch as
spam, advertisement content, or boilerplate languageis filtered out.

* Exclusion of Machine-Generated Text: Text generated by previous
language models is removed to avoid reinforcing any existing biases or
errors.
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* Language and Domain Filtering: Ensuring a balanced representation
of languages and topics so that the model does not become overly biased
toward any single domain.

These steps are crucial because even small amounts of poor-quality data can
mislead the model during training, resulting in degraded performance on real-
world tasks.

Document Formatting and Chunking. After cleaning, the data must be
structured in a way that is compatible with the models architecture. Trans-
formers typically work with fixed-length input sequences (e.g., 2048 tokens).
Therefore, long documents must be split into smaller, coherent chunks. How-
ever, arbitrary splitting can break the context and flow of the text. Instead,
careful chunking is performed:

* Preserving Coherence: Chunks are preferably split at natural bound-
aries, such as paragraph breaks, section headings, or logical transitions
in the text.

» Special Considerations for Code: For code repositories, it is impor-
tant to maintain file boundaries, function definitions, and logical code
blocks to preserve the structural integrity of the code.

Proper formatting and chunking ensure that each training example is both co-
herent and contextually complete, allowing the model to learn effective repre-
sentations.

Pre-training Pipeline Overview. The pre-training process can be visualized
as a sequential pipeline, where each step is vital for the final model quality:
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’ Raw Data Collection ‘

’ Cleaning & Deduplication ‘

’ Document Formatting & Chunking ‘

Tokenization

CLM Training

’ Perplexity Evaluation ‘

Figure 2.2: Simplified pre-training pipeline for language models
Raw Data Collection: The process starts with gathering vast amounts
of data from diverse sources.

Cleaning & Deduplication: Next, the data is rigorously cleaned to
remove duplicates, spam, and low-quality content.

Document Formatting & Chunking: The cleaned data is then format-
ted into consistent, coherent chunks that the model can efficiently pro-
cess.

Tokenization: The formatted text is converted into tokenssmaller units
of text that serve as the models input.

CLM Training: The model is trained using causal language modeling,
where it learns to predict the next token in a sequence based on the
previous tokens.

Perplexity Evaluation: Finally, the models performance is evaluated
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using metrics like perplexity, which measures how well the model pre-
dicts a sample.

The Scale and Impact of Pre-training. Modern language models are trained
on trillions of tokens, enabling them to capture rare linguistic phenomena, id-
iomatic expressions, and domain-specific knowledge. For instance, GPT-4 is
estimated to have been trained on over 10 trillion tokens, covering a broad
spectrum of publicly available text. This vast training scale allows models to
perform impressively across many languages and domains, from code genera-
tion to creative writing and technical problem-solving.

Pre-training is the critical phase that defines what the model knows. While
the architecture provides the potential to express complex ideas, the quality,
diversity, and scale of the pre-training data determine the depth and breadth
of that knowledge. By combining self-supervised learning with effective data
curation and causal language modeling, developers create models that serve
as versatile foundations for a wide range of downstream tasks.

Pre-training techniques enable LLMs to develop a deep, general understand-
ing of language without the need for manual labeling. By carefully assembling
and cleaning vast amounts of data, formatting it for coherent input, and using
causal language modeling to guide learning, these models gain the ability to
perform complex language tasks. This foundation is essential not only for gen-
erating fluent and coherent text but also for fine-tuning models for specialized
applications in various domains.

2.3 Basic Training Infrastructure

Training large language models like DeepSeek-R1 requires infrastructure far
beyond a single machine or even a single data center server. The sheer size
of these modelstens to hundreds of billions of parameterscombined with the
trillions of tokens needed for effective pre-training makes efficient distributed
training across clusters of GPUs essential. This section explains the basic
training infrastructure that underpins such efforts, including distributed train-
ing strategies, parallelism techniques, and the critical role of mixed-precision
arithmetic in making training feasible.

Why Distributed Training is Necessary.

The memory requirements for training large transformers exceed what can fit
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on a single GPU. Even if all parameters fit into memory, the need to process
large batches for statistical efficiency, coupled with high-resolution gradients,
makes distributed training inevitable. For example, a 70-billion parameter
model requires around 140GB of memory just to store the weights in FP32far
beyond the memory of any single GPU.

Additionally, training times must be kept reasonable. Training a trillion-token
corpus on a single machine could take years. Splitting the load across hun-
dreds or thousands of GPUs reduces training time to weeks or months. This
combination of model size and data volume necessitates a sophisticated dis-
tributed training infrastructure.

The Three Dimensions of Parallelism

Modern distributed training relies on three complementary forms of paral-
lelism, each addressing a different bottleneck:

Distributed Training
(Parallelism)

Y

ach GPU holds a model cop, a weight matrix W € R4x?) to different GPUs; may have pipeline bubbles,
gradients are synchronized) mitigated by 1F1B)

Data Parallelism Tensor Parallelism Pipeline Parallelism
(Split batch across GPUs, (Split model layers, e.g., partition (Assign consecutive layers
€ Ys

Figure 2.3: The Three Dimensions of Parallelism

* Data Parallelism. In data parallelism, the training batch is split across
multiple GPUs. Each GPU processes a different slice of data using its
own copy of the model. After processing, gradients from all GPUs are
averaged (synchronized), and the model is updated in unison. This is
the simplest form of parallelism, but it does not address models too large
to fit on a single GPU.

e Tensor Parallelism. Tensor parallelism splits the layers themselves
across devices. For example, each matrix multiplication might be split
so that each GPU holds only part of the weight matrix. This allows
extremely large models to fit across multiple GPUs.

If the weight matrix for a layer is W € R?*¢ and there are four GPUs,
each GPU might store a quarter-sized shard Wi, Wy, W3, W,4. Dur-
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ing forward and backward passes, GPUs collectively compute the full
matrix multiplication using efficient communication (all-reduce or all-
gather).

 Pipeline Parallelism. In pipeline parallelism, consecutive layers are
assigned to different GPUs. This allows the entire model to be split into
stages, each handled by a subset of devices. For example, layers 1-12
might reside on GPU group 1, while layers 13-24 reside on GPU group
2.

However, this introduces a pipeline bubble: the time during which early
GPUs finish their work and must wait for later GPUs to catch up. Ad-
vanced pipeline strategies like 1F1B (one forward, one backward pass
overlapping) mitigate this problem.

Pipeline Bubble

Input Sequence Output Sequence

IF1B Overlap

Figure 2.4: Pipeline Parallelism

Combining Parallelism Techniques

For massive models, none of these techniques suffices alone. Modern training
combines all three:

* Data parallelism splits the batch across GPU nodes.
* Tensor parallelism splits each layer across GPUs within a node.

* Pipeline parallelism splits the model vertically across different
nodes.

This hybrid approach ensures both memory efficiency and maximal hardware
utilization. Below is a high-level summary table:
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Parallelism Splits Purpose

Data Parallelism Batch Handle large data
Tensor Parallelism Layer Matrix  Fit large layers
Pipeline Parallelism  Layers Fit entire model

Table 2.1: Comparison of parallelism techniques

Communication Efficiency

All distributed training requires communication to synchronize gradients,
share activations, or transfer intermediate results. Efficient communication
libraries, such as NVIDIA NCCL, are crucial. Poorly optimized communica-
tion can bottleneck training, with GPUs spending more time waiting for data
than computing gradients.

For example, data parallelism requires all GPUs to exchange gradients at the
end of each batch. This is often done using an all-reduce operation:

N
1
AllReduce(g;) = N E [
k=1

For tensor parallelism, the output of a matrix multiplication must be recon-
structed by gathering partial results across GPUs:

Y = MatMul(X, [W7, Wa,...]) — AllGather(Y)

Effective overlap of computation and communication is key to maintaining
high hardware utilization.

Mixed-Precision Training.

Another vital technique in large-scale training is mixed-precision training,
which uses lower precision (e.g., FP16 or BF16) for most computations while
retaining higher precision (e.g., FP32) for select accumulations, such as the
master copy of model weights.

Mixed precision offers two primary benefits:

* Memory savings: Halving precision roughly halves memory use, al-
lowing larger batches and models.

¢ Speed: Modern GPUs have specialized hardware (Tensor Cores) opti-
mized for low-precision matrix math, greatly accelerating computation.
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A typical mixed-precision training loop includes:

with torch.autocast("cuda"):
loss = model(input).loss
scaler.scale(loss) .backward ()
scaler.step(optimizer)
scaler.update()

Here, the autocast context ensures forward pass operations use lower pre-
cision, while the gradient scaler handles dynamic adjustment of gradients to
prevent underflow. This technique allows stable training even in reduced pre-
cision.

Hardware and Cluster Setup
State-of-the-art training runs typically require:
¢ Thousands of A100, H100, or similar GPUs.
» High-bandwidth interconnects like NVLink within nodes.

* RDMA-capable network fabric between nodes (e.g., InfiniBand).

 Large shared storage (e.g., Lustre or GPFS) for dataset access.

A representative cluster might look like:

Component Example

GPU NVIDIA H100
Per-node GPU count 8

Inter-node bandwidth 200 Gbps

Cluster size 2048 GPUs
Storage Parallel file system

Table 2.2: Example cluster configuration for LLM training

Monitoring and Failure Recovery.

With thousands of GPUs working in tandem, hardware failures are inevitable.
Modern training frameworks incorporate:

* Automatic checkpointing.
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* Elastic recoveryrebalancing workloads after node failures.

¢ Real-time monitoring of utilization, communication overhead, and
memory pressure.

Large language model training would be infeasible without a sophisticated
combination of distributed parallelism, mixed-precision arithmetic, and high-
performance hardware infrastructure. These foundational techniques form the
operational backbone of every modern LLM project, enabling researchers to
transform architectural innovations into practical, scalable models that can
reason across vast domains of human knowledge.

2.4 Optimization Algorithms: Challenges and
Solutions

Training large language models (LLMs) involves minimizing a loss function
over billions of parameters using datasets that span trillions of tokens. This
optimization problem is difficult for several reasons:

* High Dimensionality: The vast number of parameters creates a highly
non-convex and rugged optimization landscape with many local minima
and saddle points.

¢ Noisy Gradients: When using massive datasets, the gradients com-
puted on mini-batches can be extremely noisy, which complicates con-
vergence.

* Memory Constraints: Storing all intermediate activations for back-
propagation in deep models is often impractical due to hardware limita-
tions.

To address these challenges, modern LLM training pipelines incorporate a
suite of techniques. In this section, we explain the problems and present the
solutions that have been developed, covering adaptive optimization, dynamic
learning rate scheduling, and memory efficiency strategies.

32



2.4. OPTIMIZATION ALGORITHMS: CHALLENGES AND SOLUTIONS

Adaptive Optimization with AdamW

Standard stochastic gradient descent (SGD) updates parameters uniformly:

9t+1 =0, — 79t

where 7 is the learning rate and g, = VL£(6;) is the gradient at step ¢. How-
ever, when different parameters behave differently, using a single learning rate
for all parameters can lead to slow convergence or instability.

Adam (Adaptive Moment Estimation) was designed to overcome these issues
by adapting the learning rate on a per-parameter basis. It does this by main-
taining:

¢ First Moment (Mean) Estimate:
me = frmg—1 + (1 — B1)gr,
which serves as a momentum term to smooth out noisy gradients.

¢ Second Moment (Variance) Estimate:
vy = Bove—1 + (1= B2)g;-

Since both m; and v; start at zero, they are biased during the initial iterations.

Bias-corrected estimates are computed as:

= -
L= p

Ut
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The update rule for Adam becomes:

My
Vo + €

where € is a small constant to avoid division by zero.

9t+1 = 0, -—n

Decoupling Weight Decay: AdamW In standard Adam, weight decay (L2
regularization) is applied directly to the gradients. However, this can interfere
with the adaptive scaling of gradients. AdamW addresses this by decoupling
weight decay from the gradient update. After computing the Adam update,
weight decay is applied directly:

0,54,_1 = Ht — — r]/\ﬁt,

my
n\/a-&-e
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where )\ is the weight decay coefficient. This decoupling ensures that weight
decay acts as a true regularizer without distorting the adaptive updates.

Practical Settings for AdamW For training LLMs, typical AdamW hyperpa-
rameters might be:

Parameter Typical Value
Learning rate (peak) | 1 x 1074

B 0.9

Ba 0.95

Weight decay () 0.1

€ 1x10°8

Table 2.3: Typical AdamW hyperparameters for transformer pre-training

Dynamic Learning Rate Scheduling: Warmup and Cosine
Decay

Using a fixed learning rate throughout training is rarely effective. Early in
training, when the models parameters are far from optimal, a high learning
rate can lead to unstable updates. Later, as the model begins to converge, a
high learning rate may prevent fine-tuning of the parameters.

Learning Rate Warmup

The warmup phase gradually increases the learning rate from a very low value
to a peak value over Tyarmyp Steps:

t
Mt = Nmax > fort < Twarmup-
Twarmup
This prevents large, unstable updates at the start of training.
Cosine Decay

Once the model has warmed up, the learning rate is gradually decreased using
a cosine decay schedule:

1 t— Twarmup
_, .1 — ) (1 T —7m "))
Ui TImin + 2 (nmax 77mm) ( +cos <Tlotal - TWﬂImUPﬂ-

Here, 1y is the minimum learning rate and 7T is the total number of train-
ing steps. This schedule enables large updates initially and progressively
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smaller, fine-tuning updates as training converges.

Learning Rate

Training Steps

Figure 2.5: Example of a learning rate schedule combining warmup (first 10
steps) and cosine decay (remaining steps)

Memory Efficiency Techniques

Training deep and wide models not only requires a lot of computation but
also a significant amount of memory to store intermediate activations during
the forward pass. This can be a limiting factor when training on available
hardware.

Gradient checkpointing reduces memory usage by saving only a subset of in-
termediate activations during the forward pass. When these activations are
needed for backpropagation, they are recomputed on the fly. Although this
increases computation time, it can reduce memory consumption by 3050%.
In PyTorch, this can be implemented as:

def checkpointed_layer(layer, input):
return torch.utils.checkpoint.checkpoint(layer, input)

When memory constraints force the use of small mini-batch sizes, training
can become unstable due to high variance in gradient estimates. Gradient ac-
cumulation allows the model to process several microbatches, summing their
gradients before performing an optimization update. This approach effectively
simulates a larger batch size without exceeding memory limits:
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optimizer.zero_grad()

for microbatch in batch_split(input_batch, microbatch_size):
loss = model (microbatch).loss
loss.backward()

optimizer.step()

Integrating the Solutions into a Training Pipeline

A robust training pipeline for LLMs integrates all these techniques. The opti-
mizer (AdamW) manages the parameter updates adaptively, while the learning
rate schedule ensures stability from the beginning of training to convergence.
Memory efficiency methods like gradient checkpointing and accumulation
make it feasible to train models that would otherwise exceed hardware lim-
itations.

A simplified training loop might look like this:

for step in range(total_steps):
optimizer.zero_grad() # Reset gradients at the beginning of each step
for microbatch in microbatches(batch):
# Use mized precision to reduce memory usage and speed up computation
with torch.autocast("cuda"):
loss = model(microbatch).loss
# Scale loss for numerical stability; accumulate gradients across
microbatches
scaler.scale(loss) .backward()
# Update model parameters using Adami
scaler.step(optimizer)
# Update learning rate according to the warmup and cosine decay schedule
scheduler.step()
scaler.update()

The optimization problem in LLM training is multifaceted:

« High Dimensionality and Noisy Gradients: Adaptive optimizers like
AdamW are used to scale learning rates per parameter and decouple
weight decay, stabilizing training in complex loss landscapes.

¢ Learning Rate Scheduling: A dynamic schedule that starts with a
warmup phase and transitions to cosine decay helps manage the size
of updates, allowing for aggressive learning early on and fine-tuning as
training converges.

* Memory Constraints: Techniques such as gradient checkpointing and
gradient accumulation enable the training of very large models by reduc-
ing memory requirements without sacrificing the effective batch size.
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Together, these strategies form a comprehensive optimization framework that
ensures efficient, stable, and scalable training of large language models. By
addressing the challenges head-on, this integrated approach allows practition-
ers to push the boundaries of model size and performance, even on hardware
with limited resources.

2.5 Basic Evaluation Metrics

Evaluating large language models (LLMs) is a multi-dimensional challenge
because different metrics capture different aspects of model performance. A
robust evaluation framework not only helps in tracking improvements during
pre-training and fine-tuning but also aids in diagnosing strengths and weak-
nesses of the model. In this section, we explain the key evaluation metrics,
the underlying problems they address, and how they provide complementary
insights into a model’s performance.

The metrics discussed here fall into three broad categories:

1. Fluency and Predictive Accuracy: Measured by perplexity, this met-
ric assesses how well the model predicts the next token given its context.

2. Functional Correctness in Structured Tasks: Measured by pass@k
in code generation tasks, it evaluates whether the model can generate a
correct solution among multiple attempts.

3. Task-Specific Competence: Measured by standardized reasoning,
math, and general knowledge benchmarks, these tests probe the models
ability to perform multi-step reasoning and recall factual information.

Below, we discuss each metric in detail, explain why it is used, and point out
its limitations.

Perplexity: Measuring Fluency and Predictive Accuracy

The Problem: Capturing Statistical Fit of Language

During pre-training, a language model learns to predict the next token given
the preceding context. However, a key challenge is determining how well
the model has internalized the structure of the language. Perplexity serves
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as a proxy for this predictive ability. It quantifies the model’s uncertainty by
measuring the average likelihood that the model assigns to each token in a test
set.

Definition and Interpretation

Perplexity is defined as:

N
1
Perplexity = exp (N Z logp(xy | 1, 2o, ... ,It—1)> ,
t=1

where N is the total number of tokens. A lower perplexity indicates that the
model is more confident about its predictions. For example, a perplexity of 10
implies that, on average, the models predictions are as uncertain as if it were
choosing uniformly among 10 options.

Why It Matters and Its Limitations

Perplexity is useful because it directly reflects the fluency and statistical accu-
racy of the language model. However, it has its limitations:

 Surface-Level Evaluation: Perplexity primarily measures the models
ability to capture local language structure but does not evaluate deeper
reasoning or factual correctness.

¢ Dependency on Tokenization: Changes in tokenization schemes can
affect perplexity, making cross-model comparisons challenging unless
the tokenization is consistent.

A typical perplexity curve (see Figure 2.6) shows how perplexity decreases as
training progresses, indicating improved predictive performance.
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Figure 2.6: Typical perplexity curve during pre-training. A decrease in per-
plexity indicates that the model is better at predicting the next token.

Pass@k: Assessing Functional Correctness in Code Genera-
tion

When generating code, minor syntactic or logical errors can render a solution
completely unusable. Unlike natural language, code requires exactness, and a
single mistake can cause failure. To address this, pass@k is used to evaluate
how often a model can generate a correct solution among multiple attempts.

For a set of programming problems, the model generates k£ independent solu-
tions per problem. The pass@k metric is defined as:

Number of problems solved correctly by at least one solution
Total number of problems '

pass@k =

For instance, if a model is evaluated on 100 problems and produces 5 candidate
solutions per problem, and if at least one correct solution is generated for 72
problems, then:

72
@5 =—=0.72.
pass 100

Why It Matters and Its Limitations

Pass @k is particularly important in contexts like competitive programming or
code completion, where functional correctness is binary. However, it has its
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own set of challenges:

e Multiple Correct Approaches: There can be multiple valid solutions
to a coding problem. Pass @k must be interpreted with an understanding
that it only measures the rate of obtaining at least one correct solution.

¢ Dependency on k: The value of k can significantly affect the metric. A
larger k typically leads to a higher pass rate, but may also incur greater
computational costs during evaluation.

Task-Specific Benchmarks: Evaluating Reasoning, Mathe-
matics, and General Knowledge

While perplexity and pass @k focus on fluency and correctness in specific do-
mains, they do not capture a models ability to reason, solve complex problems,
or recall factual information. To address this, task-specific benchmarks are
employed.

Reasoning Benchmarks:

* GSMBSK: A dataset of grade-school math word problems that requires
multi-step reasoning.

* MATH: A set of competition-level math problems that test deeper math-
ematical reasoning.

* AQuA: A collection of analytical questions that demand logical infer-
ence and reasoning.

For example, a GSM8K problem might ask: John has 12 apples. He gives 4 to
his friend and buys 7 more. How many apples does he have now? A reasoning-
capable model should decompose this into steps (start with 12, subtract 4, add
7) to arrive at the correct answer, 15.

General Knowledge Benchmarks:

* TriviaQA: A dataset consisting of open-domain questions covering a
wide range of topics.

¢ NaturalQuestions: Real-world questions sourced from actual user
queries.
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* OpenBookQA: A benchmark that tests scientific knowledge and the
ability to apply it.

For instance, a TriviaQA question may be: Who painted the ceiling of the
Sistine Chapel? A factually knowledgeable model should answer:

Michelangelo.

Why Multiple Benchmarks are Necessary

No single metric can capture all facets of an LLMs performance. Perplex-
ity measures how well a model predicts language at a surface level, while
pass@k evaluates its ability to produce functionally correct outputs in con-
strained tasks like code generation. Meanwhile, reasoning and general knowl-
edge benchmarks assess deeper cognitive abilities, such as multi-step infer-
ence, problem solving, and factual recall.

Aggregating results across these benchmarks provides a more comprehensive
picture of a models strengths and weaknesses. For example, a table summa-
rizing performance might look like:

Benchmark Score
GSMB8K (Math) 87%
TriviaQA (General Knowledge) 78%
MATH (Competition Math) 62%

Table 2.4: Example performance across reasoning and general knowledge
benchmarks

Evaluation in LLM development is not about finding a single best model;
rather, it is about understanding the multifaceted performance of the model
across different dimensions:

 Perplexity provides insight into how well the model has learned the
statistical properties of language.

¢ Pass@k demonstrates the models capability to generate correct outputs
in highly structured domains like code.

 Task-specific benchmarks reveal the models ability to reason, solve
complex problems, and recall factual information.
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A comprehensive evaluation framework uses all these metrics in tandem to
guide model improvements and ensure that enhancements in one area (e.g.,
fluency) do not come at the expense of others (e.g., reasoning ability).

Robust evaluation metrics are indispensable for developing and refining large
language models. While perplexity, pass@k, and specialized benchmarks
each have their limitations, together they form a balanced toolkit that informs
both model selection and future research directions. By understanding the nu-
ances of these metrics, practitioners can better diagnose performance issues,
track progress over time, and ultimately build models that are not only fluent
and accurate but also capable of deep reasoning and knowledge recall.
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Chapter 3

Techniques and Strategies
Shaping DeepSeek Models

This chapter examines the theoretical foundations and distinctive design strate-
gies that shape DeepSeeks large language models, particularly DeepSeek-R1.
It covers how DeepSeek applies Mixture-of-Experts (MoE) for scalable ca-
pacity, adapts advanced techniques for long-context processing, and employs
reinforcement learning to enhance reasoning ability. By combining these tech-
niques with explicit modeling of structured reasoning processes, DeepSeek
establishes a framework that prioritizes both computational efficiency and ad-
vanced cognitive capabilities.

3.1 Mixture-of-Experts (MoE) Architecture

The Mixture-of-Experts (MoE) architecture has emerged as a transformative
design in deep learning, especially for scaling large language models (LLMs).
By leveraging conditional computation, MoE allows models to dramatically
increase their parameter count without incurring a proportional increase in
computational cost at inference time. In this section, we provide a comprehen-
sive overview of MoEits historical roots, theoretical foundations, and practical
implementationwhile detailing how DeepSeek specifically harnesses this ar-
chitecture to achieve state-of-the-art performance.
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Historical Background and Motivation

The idea of employing multiple specialized experts in a model dates back to
the 1990s, where ensemble learning techniques were widely explored. Early
Mixture-of-Experts models combined several simple classifiers, each respon-
sible for a specific region of the input space, and a gating mechanism to decide
which expert to use for a given input. Although these early approaches demon-
strated the benefits of model specialization, they were limited by computa-
tional resources and lacked the scalability required for modern applications.

With the advent of deep learning, researchers revisited the MoE paradigm and
adapted it to work within neural network frameworks. The modern MoE archi-
tecture integrates into transformer models by replacing conventional feedfor-
ward networks with a bank of experts. This conditional computation approach
enables only a subset of the experts to be activated for each input token. In
effect, while the total number of parameters can be extremely large (often in
the billions or trillions), the computational cost for each forward pass remains
modest because only a small fraction of these parameters are used at a time.

Conceptual Foundations of Mixture-of-Experts

At its core, the MoE architecture is based on the principle of conditional com-
putation. In traditional dense neural networks, every layer processes all input
tokens using the full set of parameters. By contrast, an MoE layer is designed
such that only a small, dynamically determined subset of its parametersorga-
nized as expertsis activated for a given input.

Experts and the Gating Network: An MoE layer comprises multiple inde-
pendent sub-networks, referred to as experts. Suppose there are E experts
in the layer. Each expert is typically a simple feedforward network (FFN)
that can process an input vector. When an input token z is fed into an MoE
layer, a learned gating network computes a set of scores or probabilities that
determine which experts will be activated. In most modern implementations,
only k out of the F experts are chosen to process the inputthis is known as
top-k gating. For example, if £ = 2, then for each token only the two most
relevant experts (as determined by the gating network) are used.

Why Sparse Activation Matters: The use of sparse activation through top-k
gating means that even though the overall model may have billions of param-
eters, the computation performed on any given token is only a fraction of that.
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This sparsity is the key to scaling up model capacity without incurring pro-
hibitive inference costs. By enabling a model to selectively activate only the
most relevant experts, MoE achieves a balance between capacity (i.e., a vast
number of parameters) and efficiency.

Mathematical Formulation of MoE

To understand MoE from a mathematical perspective, consider a standard feed-
forward network (FFN) in a transformer block:

FFN(z) = o(xW; + by )Wa + ba,

where z is the input representation, W; and W5 are weight matrices, b; and
by are biases, and o is a non-linear activation function such as ReL.U.

In an MoE layer, this FFN is replaced by a collection of experts. Let Expert, ()
denote the output of the i-th expert when processing the input z. A gating
network produces a set of weights g;(z), where typically g;(z) > 0 and
Zf;l gi(z) = 1. The output of the MoE layer is then given by:

E
y= Zgz(x) - Expert; ().
i=1

In practice, however, we use top-k gating. This means that the gating network
is constrained so that only the k experts with the highest scores have non-zero
weights. For example, if £ = 2, then

y = i, () - Expert;, (x) + g, () - Expert;, (2),

where 71 and iy are the indices of the two experts with the highest gating
scores for input x. This formulation reduces the computational burden, since
only two experts’ parameters are involved in computing y.

Gating Networks: Detailed Operation and Challenges

The gating network is central to the MoE architecture. It takes an input token
representation and produces a probability distribution over the E experts. A
typical implementation uses a linear transformation followed by a softmax:

g(x) = softmax(zW, + by),
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where W, and b, are the weight matrix and bias for the gating network. The
softmax ensures that the outputs are non-negative and sum to one. To imple-
ment top-k gating, one common approach is to compute the full softmax and
then set all but the top k entries to zero, renormalizing if necessary.

However, designing an effective gating network is challenging:

 Training Instability: Learning to correctly route tokens to the appro-
priate experts is a non-trivial optimization problem. If the gating net-
work does not learn effectively, some experts might be overused while
others are rarely activated.

* Load Imbalance: Without proper incentives, the model may converge
to a state where a few experts handle most of the computation, while
many remain underutilized. This imbalance not only wastes capacity
but also leads to inefficient training.

* Cold Start Issues: Experts that are rarely chosen during early train-
ing might not receive enough updates, causing them to lag behind in
performance. This ”cold start” problem can hinder overall model con-
vergence.

To mitigate load imbalance, researchers add an auxiliary loss term to encour-
age the gating network to distribute tokens more evenly across experts:

Lbalance = A - KL (pobserved H puniform) 5

where Pobserved 18 the distribution of tokens across experts and pypiform 1S @ uni-
form distribution. The hyperparameter A controls the strength of this balanc-
ing term.

Architectural Placement of MoE in Transformers
In standard transformer architectures, each block consists of a multi-head self-
attention layer followed by a feedforward network (FFN), with layer normal-
ization and residual connections applied throughout:

h = LayerNorm(z + MultiHeadAttention(z)),

y = LayerNorm(h + FEN(h)).
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In MoE transformers, the feedforward network is replaced by an MoE layer:

y = LayerNorm(h + MoE(h)).

This modular integration allows the model to retain the powerful self-attention
mechanism for capturing token-to-token dependencies, while the MoE layer
provides a scalable and efficient means of increasing model capacity. The
MOoE layer, through its conditional computation, offers the dual benefit of high
capacity and reduced inference cost.

Detailed Illustrative Diagram

To visualize the MoE mechanism more comprehensively, consider the follow-
ing diagram that outlines the flow of a token through an MoE layer with top-k
gating:
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FFNg(z)
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Figure 3.1: Illustrative diagram of an MoE layer. The input token representa-
tion is processed by a gating network, which selects the top-k experts (here,

Expert 1 and Expert 2) to compute the output as a weighted sum.

In this diagram, the gating network computes the routing weights g(x), and
only the experts with the highest weights (e.g., Expert 1 and Expert 2) are ac-
tivated. Their outputs are then combined to produce the final output, ensuring
that only a small subset of the models parameters is used for each token.

Comparison to Dense Transformers

It is instructive to compare MoE transformers with conventional dense trans-
formers. The table below summarizes key differences:
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Aspect Dense Transformer MOoE Transformer

Active Parameters per Token Entire FFN Only top-k experts

Total Model Capacity Limited by GPU memory Can be extremely large

Inference Cost Fixed, high Proportional to k (sparse)

Specialization Homogeneous processing Experts specialize in different
patterns

Load Balancing Not an issue Requires auxiliary loss to balance

expert usage

Table 3.1: Comparison between Dense and Mixture-of-Experts Transformers

This comparison highlights that while dense transformers use the entire net-
work for every token, MoE transformers dynamically select a small subset
of experts, allowing for enormous model capacity with only a fraction of the
computational cost per token.

Trade-offs and Challenges in MoE Systems

Despite the benefits, MoE architectures come with inherent trade-offs and
challenges:

Training Complexity: The gating network must learn to route tokens cor-
rectly, which adds an extra layer of complexity to the optimization process.
Misrouted tokens can lead to suboptimal learning or even training instability.

Load Imbalance: Without careful regularization, the gating network might
overuse certain experts while neglecting others. This imbalance can lead to
inefficient use of model capacity. DeepSeek addresses this by introducing an
auxiliary balancing loss that encourages a more uniform distribution of tokens
across experts.

Communication Overhead: In distributed training setups, MoE layers can
incur additional communication costs because expert activations may reside
on different GPUs. Efficient communication strategies, such as optimized all-
to-all operations, are critical to mitigate this overhead.

Cold Start for Experts: Experts that are rarely activated may not receive
sufficient gradient updates, potentially leading to dead experts that contribute
little to the overall performance. Special initialization strategies and adaptive
regularization can help alleviate this problem.
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How DeepSeek Implements MoE

DeepSeek models, such as DeepSeek-V3 and DeepSeek-R1, leverage the MoE
architecture to scale up model capacity efficiently. Here are some specifics of
DeepSeeks implementation:

1. Sparse Activation with Top-k Gating: DeepSeek uses top-k gating,
where typically k& = 2, meaning that for each token only the two most rel-
evant experts are activated. This ensures that even though the total model
capacity might be in the hundreds of billions of parameters, only a fraction
(e.g., 37B active parameters) is used per token, significantly reducing compu-
tational cost.

2. Load Balancing Strategies: DeepSeek employs an auxiliary loss term
designed to balance the load across experts. By penalizing deviations from a
uniform distribution, the model ensures that no single expert is overburdened
while others are underutilized. This balancing is critical for both training effi-
ciency and achieving robust performance across various tasks.

3. Integration within the Transformer Block: In DeepSeeks architecture,
the MoE layer replaces the conventional feedforward network (FFN) in the
transformer block. The overall structure remains:

h = LayerNorm(z + MultiHeadAttention(x)),

y = LayerNorm(h + MoE(h)),

where MoE(h) incorporates the expert networks and the gating mechanism.
This design ensures that the benefits of self-attention are preserved while the
computational efficiency of the feedforward pass is enhanced through sparse
expert activation.

4. Scalability and Efficiency: By using the MoE architecture, DeepSeek
models achieve massive scalability. For instance, DeepSeek-V3 boasts a total
model size of 671 billion parameters, but thanks to sparse activation, only a
fraction is used for each token. This design enables the model to harness the
expressive power of a vast parameter set while keeping inference and training
costs manageable.
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Case Study: DeepSeek’s MoE in Practice

Consider a scenario where DeepSeek-V3 is deployed for a complex language
task requiring both general knowledge and domain-specific reasoning. In a
dense transformer, every token would be processed by a massive, monolithic
FFN, consuming substantial memory and computational resources. In con-
trast, DeepSeeks MoE implementation dynamically routes each token through
only a couple of specialized experts, tailored to handle different aspects of
the input. One expert might specialize in syntactic processing, while another
might focus on semantic understanding or domain-specific terminology.

This conditional routing not only reduces the inference time but also allows
each expert to develop specialized skills over the course of training. The gating
network continuously learns which experts are best suited for different types
of tokens. Over time, this leads to a model where experts become highly pro-
ficient in their respective niches, resulting in improved overall performance,
particularly in challenging tasks that require nuanced understanding or rea-
soning.

Distributed Training Considerations

When training MoE models like those used in DeepSeek, additional complex-
ities arise in distributed environments. Since experts are often spread across
multiple GPUs or nodes, the model must handle:

* Efficient Data Routing: Ensuring that tokens are sent to the correct
GPU where the corresponding expert resides.

¢ Synchronized Updates: Aggregating gradients from different GPUs to
update the expert parameters correctly.

¢ Communication Overhead: Minimizing the time spent on data trans-
fer between GPUs by using optimized all-to-all communication tech-
niques.

DeepSeek addresses these challenges through careful co-design of algorithms
and hardware-aware optimizations. Techniques such as overlapping commu-
nication with computation and using efficient network protocols ensure that
the benefits of MoE are not offset by inter-device communication delays.
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While the MoE architecture offers a powerful framework for scaling language
models, several open research challenges remain:

* Dynamic Expert Specialization: Further work is needed to understand
and improve how experts develop specialized knowledge over time and
how to encourage diverse yet complementary expertise.

* Adaptive Routing Mechanisms: Developing more sophisticated gat-
ing networks that can adaptively adjust the number of experts activated
based on input complexity or uncertainty.

* Balancing Trade-offs: Research on better load balancing methods that
minimize communication overhead and training instability, especially
in large-scale distributed settings.

* Robustness and Generalization: Investigating how MoE architectures
perform on out-of-distribution tasks and ensuring that the specialization
of experts does not lead to overfitting on narrow domains.

DeepSeek has put lots of effort exploring these avenues, aiming to further
refine its MoE implementations and push the boundaries of what large-scale
language models can achieve.

The Mixture-of-Experts architecture represents one of the most promising di-
rections for scaling large language models efficiently. By allowing only a
small, carefully chosen subset of experts to be active for each token, MoE
enables the construction of models with enormous capacity without incurring
prohibitive computational costs. The combination of conditional computation,
expert specialization, and efficient load balancing underpins the success of
MoE-based systems like DeepSeek-V3 and DeepSeek-R1. In summary, MoE
offers:

* Massive Model Capacity: Enabling billions of parameters while main-
taining efficient inference through sparse activation.

» Expert Specialization: Allowing different experts to learn and handle
distinct aspects of the input data.

¢ Cost-Effective Training: Reducing computational and memory re-
quirements via conditional computation and optimized routing.
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By understanding both the theoretical foundations and the practical challenges,
readers gain insight into why MoE has become a cornerstone for modern
LLMs and how innovations like DeepSeeks implementation can drive further
advances in the field. As the research community continues to address open
challenges, the MoE paradigm is poised to play an increasingly critical role in
developing models that are not only larger and more powerful but also more
efficient and adaptable to diverse tasks.

3.2 Long-Context Support

Modern large language models (LLMs) are increasingly called upon to process
lengthy documents, multi-file codebases, and extended dialogues. In many
real-world applicationssuch as legal contract review, scientific paper analy-
sis, and comprehensive code generationthe ability to handle long contexts is
not just beneficial; it is essential. However, traditional transformer architec-
tures were designed with relatively short input sequences in mind, typically
ranging from 512 to 2048 tokens. Extending these models to support tens or
hundreds of thousands of tokens introduces a host of theoretical and practical
challenges.

The practical applications of LLMs often extend beyond the processing of
short text snippets. Many tasks require the model to comprehend and reason
over entire documents or collections of files. Consider the following examples:

* Legal Analysis: Legal documents and contracts can be tens of thou-
sands of words long. The ability to capture long-range dependencies
is critical to understand clauses, exceptions, and interdependencies that
span the entire document.

* Scientific Literature: Research papers and technical reports often con-
tain detailed arguments and derivations spread over many pages. Un-
derstanding the full context is crucial for tasks such as summarization
and hypothesis generation.

* Multi-file Codebases: Software projects consist of many interdepen-
dent files. For tasks such as bug detection or code completion, the model
must be aware of definitions and functions that could be separated by
thousands of lines of code.
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* Long-Form Dialogue: In conversational agents, maintaining context
over long conversations improves coherence and personalization.

Short context lengths limit the models ability to capture these dependencies.
For example, if a code generation model is trained only on 4K tokens, it might
fail to recognize that a critical library import or class definition appears SK
tokens earlier, leading to errors in the generated code. Thus, supporting long
contexts not only broadens the range of applications but also significantly en-
hances the models reasoning and generative capabilities.

Theoretical Challenges: Quadratic Complexity of Self-
Attention

The primary architectural challenge in processing long sequences stems from
the self-attention mechanism. In a standard transformer, the self-attention op-
eration computes pairwise interactions between all tokens in a sequence. If
the sequence length is n and the embedding dimension is d, the query Q and
key K matrices have dimensions (n x d). The computation of the attention
scores is performed as:

QK™

R

resulting in an n X n attention matrix. This leads to a computational and mem-
ory complexity of O(n?d). For instance, with a sequence of 128K tokens, even
with moderate embedding dimensions, the full attention matrix would contain
over 16 billion entries. Such quadratic scaling quickly becomes infeasible on
current hardware.

A:

This quadratic cost is the central obstacle to long-context support. It not only
increases computation time but also demands enormous memory bandwidth
and storage. To mitigate these issues, researchers have developed alternative
attention mechanisms that approximate full attention at a significantly reduced
computational cost.

Advanced Positional Encoding: Rotary Positional Embed-
dings (RoPE)

Traditional transformers incorporate positional information by adding sinu-
soidal positional encodings to token embeddings. These fixed encodings work
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well for sequences that fall within the range seen during training, but they
do not extrapolate effectively to much longer sequences. Rotary Positional
Embeddings (RoPE) provide a solution by embedding positional information
directly into the attention mechanism.

How RoPE Works: RoPE operates by rotating the query and key vectors
according to their position in the sequence. Formally, for a given token at
position 4, the query vector g; is transformed by a rotation matrix R(7):

¢ = R(i) ¢,
and similarly for the key vectors:
ki = R(i) k;.

The rotation matrix R(7) is designed such that the dot product between rotated
vectors depends solely on the relative distance between their positions, i.e.,

~T7 T AT .

4 kj=q; R(1) R(J)kj’
which depends on j — ¢. This approach inherently provides translation invari-
ance: the attention score between two tokens is a function of their distance,

not their absolute positions. This quality is crucial for generalizing to contexts
much longer than those seen during training.

Benefits of RoPE:

» Extrapolation: RoPE allows the model to naturally generalize to longer
sequences without retraining the positional encodings.

* Improved Relative Positioning: By directly incorporating relative po-
sitions into the attention computation, RoPE can capture dependencies
that span long distances.

* Seamless Integration: RoPE is easily integrated into existing trans-
former architectures by replacing the traditional positional encoding
scheme.

Memory-Efficient Attention Mechanisms

Even with advanced positional embeddings like RoPE, computing full self-
attention over extremely long sequences is prohibitively expensive. To address
this, several strategies have been developed to reduce the memory and com-
putation requirements.
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Chunked Attention

One approach is chunked attention, which divides the long sequence into
smaller, overlapping windows (chunks) and computes attention only within
each window. This method reduces the computational complexity from O(n?)
to roughly O(nw), where w is the window size. Although this may cause the
model to miss some long-range dependencies between distant chunks, over-
lapping windows help mitigate this issue.

Sparse Attention

Another promising technique is sparse attention, which allows each token to
attend only to a subset of other tokens. For example, a token may attend to its
w nearest neighbors and a few global tokens that summarize the sequence. In
some implementations, the complexity can be reduced to O(nlogn) or even
O(n), depending on the sparsity pattern. Sparse attention balances the need to
capture local details with the requirement to model long-range dependencies.

Sliding Window Attention

Sliding window attention is a specific instance of sparse attention. Here, each
token’s attention is restricted to a fixed-size window around it:

A — qﬁv if [i — j| < w,
Y 0, otherwise.

This method preserves local structure efficiently but may need additional
mechanisms (e.g., dilated windows or global tokens) to capture dependencies
that lie outside the window.

Comparative Analysis of Attention Mechanisms

The following figure illustrates how the memory cost of different attention
mechanisms scales with sequence length:
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Figure 3.2: Memory cost growth for full, sliding window, and sparse attention
mechanisms.

Training Strategies for Long-Context Models

Even with the theoretical improvements in attention mechanisms, models
trained exclusively on short sequences tend to struggle when exposed to long
contexts. This challenge is often described in terms of positional drift and
vanishing relevance, where the model does not learn to assign sufficient im-
portance to tokens that are far apart. To address this, two key training strategies
are employed:

Curriculum Learning with Progressive Context Extension

One effective strategy is to gradually increase the sequence length during train-
inga method akin to curriculum learning. In early training stages, the model
is trained on relatively short sequences. As training progresses, the context
length is gradually extended until it reaches the target (e.g., 128K tokens).
This gradual increase allows the model to adapt its parameters to handle longer
sequences without being overwhelmed by the computational burden or noise
from extremely long contexts.
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Curated Long-Context Data

Another critical factor is the quality and relevance of the training data. For
a model to handle long contexts, it must be exposed to long-form documents
during training. Curated datasets for long-context training include:

* Books and Academic Papers: Texts with consistent narrative flow and
complex interdependencies.

* Legal and Contract Documents: These texts require understanding of
clauses and references spread over large sections.

* Multi-File Code Repositories: Codebases that require cross-file de-
pendency resolution.

* Extended Conversations: Transcripts of meetings or dialogues that
capture long-term context.

Including such data in the training corpus ensures that the model learns to
capture dependencies over long spans and does not solely focus on short-range
correlations.

DeepSeek s Long-Context Strategy

DeepSeek implements a multi-pronged strategy to achieve support for 128K-
token contexts. This strategy integrates theoretical advancements, training
methodologies, and data curation practices:

1. Advanced Positional Encoding: DeepSeek replaces traditional sinusoidal
encodings with Rotary Positional Embeddings (RoPE). By rotating the query
and key vectors based on token positions, RoPE encodes relative positional
information effectively. This method ensures that the models performance
does not deteriorate when the sequence length exceeds the training range. The
translation invariance provided by RoPE means that the attention between two
tokens depends only on their relative distance, which is vital for maintaining
coherence in long sequences.

2. Efficient Attention Mechanisms: To manage the quadratic complexity
of full self-attention, DeepSeek employs a combination of sparse and sliding
window attention. In practice, the model uses a sparse attention mechanism

58



3.2. LONG-CONTEXT SUPPORT

that reduces the number of computed attention weights, while also incorpo-
rating a sliding window approach to capture local context efficiently. These
methods reduce memory usage and computational cost, making it feasible to
handle sequences as long as 128K tokens.

3. Curriculum Learning and Data Curation: DeepSeek trains its long-
context models using a curriculum learning approach. Early training stages
focus on shorter sequences to establish a strong base model. As training pro-
ceeds, the sequence length is gradually increased until the model is exposed
to the full 128K-token context. Furthermore, DeepSeek curates a specialized
dataset containing long-form documents, multi-file projects, and extended di-
alogues. This curated data ensures that the model learns to handle long-range
dependencies effectively.

4. Hybrid Approaches for Extreme Contexts: For some applications, even
128K tokens may not suffice. While DeepSeeks core strategy is to extend
the context within the model, hybrid approaches that combine long-context
transformers with external memory (such as retrieval-augmented generation
systems) are also explored. These systems can access external data reposi-
tories to supplement the models internal context, although such methods are
beyond the scope of DeepSeeks primary design.

Evaluation and Trade-Offs

Supporting long contexts introduces trade-offs that must be carefully bal-
anced:

¢ Increased Training Cost: Longer sequences increase computational
cost per sample and may slow down training. DeepSeek mitigates this
through optimized attention mechanisms and mixed-precision training.

* Positional Drift: Models trained on short contexts may not extrapolate
well to longer ones. The use of RoPE and curriculum learning helps
minimize positional drift, but careful monitoring during training is nec-
essary.

* Local vs. Global Dependencies: While sliding window attention effi-
ciently captures local context, it may miss global dependencies. Sparse
attention patterns, often combined with global tokens, are designed to
address this issue, though finding the right balance remains an active
area of research.
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* Memory and Compute Constraints: Even with efficient approxima-
tions, processing 128K-token sequences demands significant memory.
DeepSeeks approach integrates both architectural improvements and
hardware-aware optimizations to make such large contexts tractable.

The benefits of these trade-offs are evident in application. For example, in
tasks such as contract analysis or multi-file code understanding, a model that
supports long contexts can maintain coherence across document sections that
are separated by thousands of tokens. Evaluation on long-context benchmarks
shows that models like DeepSeek, which employ these strategies, outperform
counterparts that are limited to shorter contexts.

Visualizing the Impact of Long Contexts

To illustrate the effect of long-context support, consider the following
schematic diagram comparing the memory cost growth for different attention
mechanisms as sequence length increases:

4,000 || —e— Full Attention (O(n?)) /' :
—=— Sliding Window Attention (O(n))
—e— Sparse Attention (O(n logn))

2,000 - B

Normalized Memory Cost

0l __———— o |

| | |
0 02 04 06 038 1 1.2 14
Sequence Length (tokens) -10°

Figure 3.3: Memory cost scaling for different attention mechanisms. Note the
dramatic increase in cost for full attention, versus the more modest growth for
sliding window and sparse attention.

This diagram clearly shows that while full attention scales quadratically with
sequence length, sparse and sliding window techniques significantly reduce
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the memory footprint, enabling practical long-context processing.

DeepSeek s Specific Implementation and Innovations

DeepSeek leverages a combination of the techniques discussed above to sup-
port a 128K-token context. Some of the specific innovations include:

Enhanced Rotary Positional Embeddings: DeepSeek refines the RoPE
method to better accommodate extremely long sequences. This includes cal-
ibrating the rotation parameters to ensure that the relative positional infor-
mation remains accurate over longer distances, thereby preventing positional
drift.

Hybrid Attention Mechanisms: DeepSeek s architecture incorporates both
sparse attention and sliding window strategies. This hybrid approach enables
the model to capture both local and long-range dependencies efficiently. The
model dynamically selects the appropriate attention mechanism based on the
input structure, ensuring that critical long-range connections are not lost while
minimizing unnecessary computations.

Curriculum and Data Augmentation: During training, DeepSeek adopts
a curriculum learning approach. Initially, the model is trained on short se-
quences (e.g., 4K tokens) to build a strong foundational understanding of lan-
guage. As training progresses, the context length is gradually increased to the
target 128K tokens. In parallel, the training data is augmented with a curated
corpus of long-context documents, including entire books, academic articles,
legal documents, and multi-file code repositories. This ensures that the model
learns to process extended contexts effectively.

Distributed Training Optimizations: Handling long sequences requires
careful orchestration across multiple GPUs. DeepSeek optimizes inter-device
communication by overlapping computation and communication. Efficient
all-to-all communication kernels and optimized data routing protocols are em-
ployed so that the benefits of long-context support are not negated by commu-
nication overhead.

Evaluation on Long-Context Tasks: DeepSeek s long-context capabilities
are rigorously evaluated on benchmarks designed for extended sequences.
Tasks such as multi-file code generation, long-form summarization, and com-
prehensive document analysis serve as testbeds. Early results indicate that the
ability to maintain context over 128K tokens leads to significant improvements
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in tasks that require understanding and reasoning over long documents.

Trade-Offs and Limitations

While the advancements in long-context support are promising, they come
with trade-offs:

e Computational Overhead: Even with sparse attention, processing
128K tokens is computationally intensive. This requires significant
hardware resources and may limit the models applicability in low-
resource environments.

* Model Complexity: The combination of multiple attention mech-
anisms, advanced positional encodings, and curriculum learning in-
creases the overall complexity of the model architecture, which can
make debugging and further development more challenging.

» Task-Specific Benefits: Not all tasks benefit equally from extended con-
text. For applications where relevant information is contained within
a shorter span, the additional complexity may not yield proportional
gains.

* Evaluation Challenges: Standard benchmarks for long-context reason-
ing are still under development. Without well-established evaluation
protocols, it can be difficult to quantify the exact benefits of extended
context support.

Despite these limitations, the benefits in domains that require long-term de-
pendency modeling are substantial. The careful balance of efficiency, scal-
ability, and model performance makes these trade-offs acceptable for many
high-impact applications.

Long-context support represents one of the most significant advancements in
the evolution of large language models. By addressing the quadratic com-
plexity of traditional self-attention, utilizing advanced techniques like Rotary
Positional Embeddings and sparse attention, and employing curriculum learn-
ing alongside carefully curated long-context data, models like DeepSeek are
able to process up to 128K tokens in a single forward pass. This breakthrough
opens up new possibilities for applications that require a comprehensive under-
standing of lengthy documents, extensive codebases, and multi-step reasoning
processes.
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Through this integrated approach, DeepSeek not only pushes the boundaries
of context length in language modeling but also lays the groundwork for more
advanced reasoning and understanding capabilities in real-world applications.
As research in this area continues to evolve, further refinements in attention
efficiency, positional encoding, and training strategies will be critical to fully
harness the potential of long-context models.

3.3 Reinforcement Learning for Reasoning

Large language models (LLMs) have demonstrated remarkable capabilities
in generating fluent text and recalling factual information through extensive
pre-training. However, when it comes to tasks that require multi-step logi-
cal reasoning, such as solving complex math problems, constructing logical
proofs, or generating structured code, the traditional objectives of next-token
prediction and even supervised fine-tuning fall short. This section explains the
limitations of pre-training and supervised learning for reasoning, introduces
the fundamentals of reinforcement learning (RL) for reasoning, and describes
DeepSeeks specific approachincluding its Group Relative Policy Optimization
(GRPO) and reward modeling techniquesto enhance reasoning quality in its
models.

Limitations of Pre-training and Supervised Fine-Tuning

Pre-training generally involves training a model to predict the next token given
a prior context. Although this method effectively captures grammar, syntax,
and factual correlations, it does not necessarily encourage the model to de-
velop a coherent, step-by-step reasoning process. For example, consider the
following simple math problem:

If a square has a side length of 5, what is its area?
A model trained solely by next-token prediction might simply memorize the
fact that the area is 25, without learning to derive the answer using the under-

lying principles:

1. Recall the formula: A = s2.

2. Substitute s = 5.
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3. Compute A = 25.

Similarly, even supervised fine-tuning (SFT) where the model is trained on
curated examples typically optimizes for token-level overlap with a target an-
swer. While SFT can help the model learn the format of explanations, it does
not explicitly incentivize the intermediate logical steps that constitute true rea-
soning. In both cases, the training objective does not reward the process; it
rewards only the final outcome.

The Rationale for Reinforcement Learning in Reasoning

To address this gap, reinforcement learning (RL) is employed to directly opti-
mize the models reasoning process. In RL, the model (or agent) interacts with
an environment and receives a reward based on the quality of its outputs. The
key idea is to shape the models behavior by rewarding not just the correct final
answer but also the intermediate steps that lead to that answer.

Core RL Concepts
In the RL framework, the model follows a policy 7y (parameterized by 6) that
generates a sequence of tokens x = (x1, %2, ..., xr). The training objective

is to maximize the expected reward:

max Earmy [r(2)],
where () is a reward function that evaluates the quality of the generated rea-
soning process. Unlike pre-training, where the objective is simply to predict

the next token, the RL objective considers the overall quality of the reason-
ingrewarding clarity, logical consistency, and correctness.

Benefits of RL for Reasoning

The use of RL for reasoning offers several important advantages:
e Process-Oriented Learning: RL enables the model to be rewarded
for generating a detailed chain-of-thought (CoT) rather than only for

arriving at the correct final answer.
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* Exploration of Multiple Strategies: By sampling various reasoning
paths and comparing their rewards, the model can explore and discover
more effective problem-solving strategies.

» Alignment with Human Judgment: When the reward function is de-
signed to reflect human preferencessuch as clarity, logical progression,
and completenessthe models reasoning becomes more interpretable and
aligned with human expectations.

Group Relative Policy Optimization (GRPO)

A critical challenge in applying RL to reasoning is the high variance and noise
in the reward signal, which can lead to instability during training. DeepSeek
addresses this challenge by using a specialized variant of Proximal Policy Op-
timization (PPO) called Group Relative Policy Optimization (GRPO).

Understanding GRPO

Standard PPO updates the policy based on the absolute reward of each sam-
pled output. However, in the context of reasoning, it is more beneficial to
compare the quality of different reasoning paths generated for the same task.
GRPO does exactly that by evaluating candidate completions within a group,
assigning higher rewards to those that outperform others.

The GRPO objective is given by:
er(@)

LGRPO:E ]0gﬂg($|$0)'m s
z'eG

where:

* 1z is the initial prompt.
* G is the group of candidate completions generated for the same prompt.

* r(z) is the reward assigned to a particular reasoning path.
This formulation encourages the model to favor reasoning paths that are rela-
tively superior to other candidates for the same task. By focusing on relative

improvements, GRPO helps reduce the variance typically seen in standard RL
training, leading to more stable convergence.
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Advantages of Relative Comparison

The relative reward signal in GRPO aligns more closely with human evalu-
ation, where the quality of reasoning is often judged in comparison to alter-
native approaches. This method not only promotes correct answers but also
emphasizes the quality of the reasoning process, including clarity, logical flow,
and adherence to a step-by-step format.

Reward Modeling for Reasoning Quality

For reinforcement learning to effectively improve reasoning, the reward
model must capture multiple dimensions of what constitutes good reasoning.
DeepSeeks reward model evaluates completions based on several key factors:

¢ Correctness: The final answer must be accurate.

* Clarity: The reasoning process should be clearly articulated, with each
step logically following from the previous one.

* Completeness and Format: The explanation should be structured in a
way that mirrors a human-like chain-of-thought, including intermediate
steps and explanations.

The combined reward function is expressed as:
T(x) =X\ Tcorrecl(m) + A2 Tc]arity(m) + A3 Tformat(x)a

where A1, Ao, and A3 are coeflicients that balance the contribution of each com-
ponent. This multi-objective reward ensures that the model does not merely
focus on producing the correct final answer, but also learns to articulate the
reasoning process in a coherent and transparent manner.

Training the Reward Model

The reward model is itself trained using supervised learning. A dataset of rea-
soning completions is collected and scored by human annotators or automated
tools. For math problems, symbolic solvers can be used to verify correctness,
while human raters assess clarity and logical structure. This reward model
is then used during the RL phase to assign reward values to the candidate
reasoning paths generated by the model.
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The Reinforcement Learning Pipeline for Reasoning

DeepSeek s RL pipeline for improving reasoning can be broken down into
several key stages:

Stage 1: Base Model Pre-training

Initially, the base model is pre-trained on massive text corpora using next-
token prediction. This stage imparts general language fluency and factual
knowledge, but it does not optimize for the explicit reasoning process.

Stage 2: Reward Model Training

Next, a reward model is trained on a dataset of reasoning completions. This
dataset includes examples of high-quality chain-of-thought explanations, an-
notated for correctness, clarity, and format. The reward model learns to pre-
dict a reward score r(x) for any given reasoning process.

Stage 3: Reinforcement Learning via GRPO

Once the reward model is ready, the base model is fine-tuned using reinforce-
ment learning. For each prompt x, the model generates a group G of candi-
date completions. Using the GRPO objective, the model is updated based on
the relative quality of these completions. This encourages the model to explore
various reasoning paths and adopt those that yield higher overall rewards.

Stage 4: Rejection Sampling and Fine-Tuning

After the RL phase, the model generates multiple reasoning completions for
each prompt. Rejection sampling is then applied to select the best candi-
datei.e., the one with the highest reward score:

¥ =arg max  r(z).
ze{x1,...,x1 }

This best completion is used for further fine-tuning, ensuring that only high-
quality reasoning processes are reinforced in the final model.
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Ilustrative Diagram of the RL Pipeline

Pre-trained Model

Y

Reward Model Training

\4
RL Policy Optimization
(GRPO)

Y
Rejection Sampling &
Fine-Tuning

Y

Enhanced Reasoning Model

Figure 3.4: The reinforcement learning pipeline for enhancing reasoning in
LLMs.
Example: Mathematical Reasoning

To illustrate the benefits of reinforcement learning for reasoning, consider a
multi-step math problem:

If a rectangle has a length of 8 and a width of 3, what is its area?

A conventional pre-trained model might output the correct answer 24" with-
out revealing its thought process. In contrast, with reinforcement learning, the
model is encouraged to generate an explanation such as:
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1. Recall the formula for the area of a rectangle: A = length x width.
2. Substitute the given values: A = 8 x 3.

3. Calculate the product: A = 24.

The reward model assigns a high score to this detailed chain-of-thought based
on its correctness, clarity, and structured presentation. Through GRPO, the
model learns that producing such detailed explanations consistently results in
higher rewards compared to simply outputting the final answer.

Advantages and Impact of RL on Reasoning

The primary advantages of applying reinforcement learning to enhance rea-
soning are as follows:

* Improved Process Transparency: The model is encouraged to out-
put intermediate reasoning steps, which improves interpretability and
makes the decision-making process transparent. This is critical for ap-
plications where understanding the rationale behind an answer is as im-
portant as the answer itself.

* Enhanced Generalization: By exploring various reasoning paths dur-
ing training, the model learns to tackle complex and novel problems
more effectively. This exploration fosters robust generalization, partic-
ularly in tasks that require multi-step inference.

¢ Alignment with Human Judgement: The reward model, trained on
human-annotated data, ensures that the model’s reasoning aligns with
human expectations for clarity, logical flow, and completeness. This
alignment helps in building trust and usability in real-world applica-
tions.

¢ Task-Specific Optimization: Reinforcement learning allows the model
to tailor its reasoning strategies to specific domains, such as mathemat-
ical problem-solving or code generation. By directly optimizing for
reasoning quality, the model becomes more adept at handling domain-
specific challenges.
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Challenges and Trade-offs

Despite its many benefits, the reinforcement learning approach for reasoning
introduces several challenges:

Training Instability: RL training is inherently more unstable than su-
pervised learning due to the high variance in reward signals. Techniques
like GRPO help mitigate this issue by comparing candidate completions
within a group, but careful tuning of learning rates and reward scaling
is essential.

Designing the Reward Function: Crafting a reward function that accu-
rately captures all facets of good reasoning is complex. An overempha-
sis on one component (e.g., brevity) might lead the model to produce
overly terse explanations, while a reward function that is too complex
can hinder the training process. Balancing correctness, clarity, and for-
mat is a delicate task.

Computational Overhead: Generating multiple candidate reasoning
paths for each prompt and evaluating them with the reward model in-
creases the computational burden. This added cost is a trade-off for
the improved quality of reasoning and may require substantial compu-
tational resources.

Scalability and Efficiency: As the complexity of the reasoning tasks
increases, ensuring that the RL framework scales without sacrificing
performance remains a significant challenge. Further research is needed
to explore adaptive or hierarchical reinforcement learning strategies that
can manage increasingly complex tasks.

Interpretability and Debugging: Even though RL encourages
more transparent reasoning processes, interpreting the internal
decision-making process of the model remains difficult. Developing
better visualization and debugging tools is crucial for understanding
why the model prefers one reasoning path over another.

Integration with DeepSeeks Overall Strategy

DeepSeek s reinforcement learning framework for reasoning is designed to
complement its broader training pipeline. Here are some key aspects of how
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DeepSeek integrates RL into its system:

¢ Sequential Training Phases: DeepSeek first trains its base model us-
ing conventional pre-training on vast datasets to capture general lan-
guage fluency and factual knowledge. The RL phase is then applied
specifically to enhance reasoning capabilities, refining the models abil-
ity to generate detailed chains-of-thought.

» Task-Focused Reward Modeling: The reward model in DeepSeek is
carefully designed to evaluate reasoning quality across multiple dimen-
sions. By combining automated metrics (such as symbolic validation
for math problems) with human-annotated feedback, DeepSeek ensures
that the reward function aligns closely with the desired qualities in a
reasoning process.

* Iterative Refinement and Rejection Sampling: DeepSeek uses an it-
erative approach in which the RL phase is followed by a rejection sam-
pling step. In this step, multiple candidate reasoning paths are gener-
ated for each prompt, and the best oneaccording to the reward modelis
selected for further fine-tuning. This iterative refinement ensures that
only high-quality reasoning is reinforced.

* Relative Comparison through GRPO: By using Group Relative Pol-
icy Optimization (GRPO), DeepSeek encourages the model to evaluate
and compare multiple reasoning paths for the same problem. This rela-
tive comparison helps the model learn to favor strategies that yield the
highest quality output, leading to more robust reasoning performance.

Reinforcement learning for reasoning represents a significant advancement
over traditional pre-training and supervised fine-tuning. By directly rewarding
the process of multi-step reasoning, DeepSeeks RL framework addresses the
shortcomings of conventional training methods, which often neglect the im-
portance of a coherent chain-of-thought. The integration of specialized tech-
niques such as GRPO, sophisticated reward modeling, and iterative refinement
through rejection sampling enables the model not only to generate correct an-
swers but also to explain its reasoning in a clear, logical, and interpretable
manner.

While challenges such as training instability, computational overhead, and re-
ward function design persist, the benefits of this approach are substantial. En-
hanced reasoning capability leads to improved performance on complex tasks
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such as multi-step mathematical problem solving, logical proofs, and detailed
code generation. Moreover, by aligning the models internal processes with
human judgment, DeepSeeks reinforcement learning strategy paves the way
for more transparent and trustworthy Al systems.

In summary, reinforcement learning for reasoning transforms the models ob-
jective from merely predicting the next token to generating a coherent, step-by-
step explanation that reflects true logical understanding. This shift is critical
for applications where the quality of reasoning is as important as the final
output. As research in this area continues to evolve, further innovations in
reward modeling, RL algorithms, and hybrid training approaches will likely
drive even greater improvements in the reasoning capabilities of large lan-
guage models.

3.4 Chain-of-Thought Modeling

In many complex tasks, a correct final answer is only part of the solution;
the process by which the answer is reached is equally critical. Humans solve
problems by breaking them down into a series of logical, step-by-step rea-
soning processesa chain-of-thought (CoT). However, traditional training ob-
jectives for large language models (LLMs), such as next-token prediction or
even supervised fine-tuning, generally optimize only for the final output with-
out explicitly encouraging intermediate steps. Chain-of-thought modeling ad-
dresses this gap by training models to show their work, producing transparent
and interpretable reasoning paths. In this section, we explain the motivation
behind chain-of-thought modeling, the theoretical foundations underlying it,
the training techniques used to enforce structured reasoning, and the specific
methods implemented in DeepSeek. We also discuss the benefits, challenges,
and future directions of this approach.

Motivation for Chain-of-Thought Modeling

Most conventional LLMs are trained to generate the most likely sequence of
tokens, which works well for language fluency and factual recall. However,
when faced with multi-step reasoning taskssuch as solving math problems,
generating complex code, or analyzing legal documentsmerely producing a
correct final answer is insufficient. Consider the example from last section:
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If a rectangle has a length of 8 and a width of 3, what is its area?

A model that is not explicitly trained for reasoning might simply output *24”
based on memorization. In contrast, human problem solvers typically articu-
late a series of steps:

1. Recall the formula: A = length x width.
2. Substitute the values: A = 8 x 3.

3. Compute the result: A = 24.

Chain-of-thought modeling aims to encourage models to generate such step-
by-step explanations. This has several advantages:

* Transparency: A clear reasoning process allows users to verify and
trust the model’s conclusions.

* Partial Credit: Even if the final answer is slightly off, correct interme-
diate reasoning can be identified and rewarded.

* Error Diagnosis: Detailed reasoning helps in pinpointing where the
model may have gone wrong, facilitating further improvements.

* Generalization: Models that learn to reason explicitly can generalize
better to novel or more complex tasks.

Theoretical Foundations: Process vs. Outcome Supervision
Traditional training methods for LLMs are based on outcome supervision. In
this approach, the model is trained to minimize a loss function that compares
the generated output y,eq With the ground-truth output yye:

ngn Loss(ypred, Yirue)-

This formulation does not enforce that the model produces intermediate rea-
soning stepsit only cares about the final result.

In chain-of-thought modeling, we introduce process supervision. Here, the
goal is to train the model not only to produce the correct answer but also to
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generate a sequence of reasoning steps s = (s1, 82, ..., S, that lead to that
answer. The training objective becomes:

n
rnein Z LOSS(S;rem S:rue)7
i=1
where sf,red is the models predicted output at step 4, and s',, is the correspond-
ing ground-truth step. This formulation explicitly encourages the model to
show its work by decomposing a problem into logical intermediate steps.

Techniques for Chain-of-Thought Modeling

To enable chain-of-thought reasoning, several techniques are employed during
training:

Explicit Process Markers

One effective method is to insert explicit process markers into the training
data. These markers delineate each reasoning step and serve as cues for the
model. For example, in a math problem, the training text might be annotated
as follows:

<think> Step 1: Define the variables and recall the formula </think>
<think> Step 2: Substitute the given values into the formula </think>
<think> Step 3: Compute the result </think>

These markers act as a structural guide, teaching the model that a coherent ex-
planation is composed of distinct, ordered steps. By providing explicit signals
during training, the model learns to generate similar markers during inference.

Process Templates and Structured Formats
In addition to markers, predefined templates help standardize the reasoning

process. For instance, a template for solving geometry problems might require
the model to:

1. Restate the problem in its own words.

2. List all known variables.
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3. Write down the relevant formulas.
4. Substitute values and perform computations.

5. Provide the final answer with an explanation.

Training on such structured data conditions the model to output answers in
a consistent, interpretable format. This consistency not only improves clar-
ity but also facilitates evaluation, as the reasoning process can be compared
against human standards.

Reflection and Self-Verification

A further innovation in chain-of-thought modeling is the incorporation of self-
reflection. After generating a reasoning process, the model is prompted to
review its work and check for errors. For example:

Q: Solve for x in the equation x72 - 5x + 6 = 0.

A:

<think> Step 1: Identify coefficients a=1, b=-5, c=6 </think>

<think> Step 2: Apply the quadratic formula: x = (5 (25-24))/2 </think>
<think> Step 3: Compute x = 3 and x = 2 </think>

Q: Now, review your steps and verify their correctness.

This self-verification loop encourages the model to check its reasoning for
internal consistency. It mirrors human problem-solving practices and provides
an additional layer of quality control during training.

Reinforcement Learning Integration

While explicit process markers and templates guide the model during super-
vised fine-tuning, reinforcement learning (RL) further refines the chain-of-
thought. In RL, the model is treated as an agent that generates a sequence
of reasoning steps and receives a reward based on the quality of its output.
The reward function can be designed to consider multiple aspects:

T(x) =\ 7"correcl(-r) + A2 Tc]arity(x) + A3 Tformat(x)-

Here, the reward model evaluates the generated chain-of-thought for correct-
ness, clarity, and adherence to the expected structure. Techniques like Group
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Relative Policy Optimization (GRPO) are used to compare different reason-
ing paths generated for the same problem, guiding the model toward the best-
performing process. This relative evaluation is key in reducing variance in
the reward signal and ensuring that the model learns to generate high-quality,
coherent reasoning steps.

Application in DeepSeek
DeepSeek has integrated chain-of-thought modeling into its training pipeline

to improve the reasoning capabilities of its models, such as DeepSeek-R1. The
process involves several stages:

Data Preparation with Process Annotations

During the data curation phase, DeepSeek enriches its training data with ex-
plicit annotations. For example, a dataset for mathematical problem solving
might include:

Q: What is the sum of angles in a triangle?

A:

<think> Step 1: Recall that the sum of angles in a triangle is given by a known
theorem </think>

<think> Step 2: State the theorem: The sum is 180 degrees </think>

<think> Step 3: Conclude that the sum of the given triangle's angles is 180
degrees </think>

Such annotated data teaches the model to produce multi-step, coherent reason-
ing rather than simply memorizing answers.
Template-Based Supervised Fine-Tuning

DeepSeek further refines its models by fine-tuning them on a structured dataset
that follows predefined reasoning templates. For example, a template for code
generation might include:

1. An explanation of the problem context.
2. A step-by-step breakdown of the algorithm or logic.

3. Detailed comments on how each part of the code solves the problem.
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4. The final code snippet along with a summary of the solution.

This standardized format helps the model learn not only to generate the correct
final output but also to articulate the process leading up to it.

Reinforcement Learning with GRPO and Self-Reflection

After supervised fine-tuning, DeepSeek applies reinforcement learning to fur-
ther optimize the chain-of-thought. Using GRPO, the model generates multi-
ple candidate reasoning paths for each prompt. The candidate with the high-
est relative rewardassessed based on correctness, clarity, and formattingis se-
lected and used for further training. Moreover, DeepSeek incorporates a self-
reflection stage, where the model reviews its own generated reasoning and
makes adjustments. This iterative process of generation, evaluation, and re-
finement leads to a more robust reasoning capability.

Benefits of Chain-of-Thought Modeling

Chain-of-thought modeling provides several key benefits:

* Enhanced Transparency: A model that articulates its reasoning steps
allows users to understand and verify its thought process. This is espe-
cially important in domains where accountability and explainability are
critical.

* Improved Generalization: By learning to reason step-by-step, the
model is better equipped to handle novel or complex problems that were
not explicitly encountered during training. This structured approach to
problem-solving enables more reliable generalization.

¢ Facilitation of Partial Credit: In educational settings or diagnostic
applications, even if the final answer is incorrect, a well-articulated rea-
soning process can provide valuable insights and earn partial credit.

* Alignment with Human Processes: Mimicking the human approach
of showing ones work not only makes the models outputs more inter-
pretable but also aligns its training with cognitive processes that humans
use to solve problems.
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e Error Diagnosis and Debugging: Detailed chains-of-thought make it
easier to identify where errors occur in the reasoning process, facilitat-
ing more effective debugging and iterative improvement of the model.

Challenges and Trade-Offs

Despite its many advantages, chain-of-thought modeling also introduces chal-
lenges:

* Increased Complexity: Annotating training data with explicit reason-
ing steps and designing templates adds complexity to the data prepara-
tion process.

* Computational Overhead: Generating and evaluating multi-step rea-
soning processes can be more computationally intensive than producing
a single output token, potentially increasing training time.

* Reward Function Design: Crafting a reward function that balances
correctness, clarity, and format is non-trivial. Overemphasis on any sin-
gle component can skew the models behavior, leading to overly verbose
or excessively terse outputs.

* Training Instability: Integrating reinforcement learning into the train-
ing pipeline, especially with techniques like GRPO, can introduce insta-
bility if not carefully managed. Variability in reward signals may lead
to oscillations or divergence if hyperparameters are not properly tuned.

* Evaluation Difficulties: Evaluating the quality of the reasoning pro-
cess is inherently more subjective than evaluating a final answer. De-
veloping objective metrics for clarity and logical coherence remains an
active area of research.

The field of chain-of-thought modeling is rapidly evolving. Future research
might explore:

* Adaptive Templates: Rather than relying on fixed templates, models
could learn to adapt their reasoning format dynamically based on the
task at hand.
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* Hybrid Training Strategies: Combining supervised fine-tuning with
reinforcement learning in a more integrated manner could further im-
prove reasoning quality. For instance, selective application of RL to
only the reasoning components of a model might reduce computational
costs while maintaining output quality.

* Enhanced Interpretability Tools: Developing visualization
techniques and interpretability frameworks to analyze the internal
chain-of-thought can help researchers diagnose errors and improve the
model.

* Domain-Specific Process Modeling: Tailoring chain-of-thought tem-
plates and reward functions for specific domains (e.g., legal, medical,
scientific) could lead to more specialized and effective reasoning in
those areas.

¢ Interactive Human Feedback: Incorporating real-time feedback from
human users into the training loop could further align the models reason-
ing with human expectations, making the outputs even more reliable.

Chain-of-thought modeling represents a significant shift in the way LLMs
are trained and evaluated. By moving from an output-centric approach to a
process-centric one, models are not only judged on the correctness of their
final answers but also on the clarity and logical structure of the steps they
take to reach those answers. This paradigm fosters transparency, aids in error
diagnosis, and leads to more robust generalizationqualities that are essential
for real-world applications where trust and interpretability are paramount.

DeepSeek s implementation of chain-of-thought modeling exemplifies these
principles. Through the use of explicit process markers, standardized tem-
plates, reflection and self-verification techniques, and the integration of rein-
forcement learning (via GRPO) with process supervision, DeepSeek has devel-
oped models capable of producing coherent and interpretable reasoning paths.
These advancements contribute not only to better performance on complex
tasks but also to a deeper alignment between machine-generated reasoning
and human cognitive processes.

As we continue to push the boundaries of Al, chain-of-thought modeling will
remain a critical area of research, driving innovations that make models more
transparent, reliable, and ultimately more useful in diverse and challenging
domains. This structured approach to reasoning is poised to transform how
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we evaluate and interact with Al systems, paving the way for models that not
only provide answers but also explain the reasoning behind them in a clear,
step-by-step manner.
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Chapter 4

Pre-training Data and
Corpus Curation

This chapter provides a detailed explanation of how DeepSeek curates, pro-
cesses, and prepares its pre-training data to support the development of large
language models capable of advanced reasoning, long-context understand-
ing, and multi-domain competence. It covers the composition of DeepSeceks
corpus, including general text, code, and math datasets, along with essen-
tial cleaning, formatting, and tokenization processes. By understanding
DeepSeeks approach to data selection, quality control, and weighting strate-
gies, expert readers gain the foundational knowledge needed to replicate
DeepSeeks pre-training pipeline with high fidelity.

4.1 Composition of DeepSeeks Pre-training Cor-
pus

The composition of the pre-training corpus is one of the most critical factors
influencing the capabilities of a large language model (LLM). For DeepSeeks
models, particularly DeepSeek-R1, the corpus was carefully curated to ensure
balanced proficiency across general language understanding, programming
knowledge, and advanced reasoning abilities. This section provides a detailed
exploration of the types of data DeepSeek used, the rationale behind each
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data category, and how these diverse sources collectively shape the models
capabilities.

Goals of Data Composition:

Every pre-training corpus reflects a series of design choices tied to the models
intended use. In the case of DeepSeek, the overarching goals can be summa-
rized as:

* Developing strong general-purpose linguistic fluency across multiple
domains.

* Enabling advanced mathematical and logical reasoning through special-
ized training data.

e Building deep competence in programming and computational
problem-solving.

* Supporting long-context understanding, with sequences up to 128K to-
kens.

Achieving these goals requires curating data that spans multiple modalities:
natural language text, code, math problems, and reasoning-intensive content.
Core Data Sources:

DeepSeek s pre-training corpus integrates data from four primary categories,
each serving a distinct purpose in shaping the models knowledge and skills.
Table 4.1 summarizes these sources and their intended functions.

Category Examples Primary Purpose

General Language Data Wikipedia, Books, Web  Core language proficiency, factual knowledge

Documents

Programming Data GitHub, = CodeContests,  Coding knowledge, algorithmic thinking
StackOverflow

Mathematical Reasoning ~ GSMS8K, MATH, AIME,  Multi-step reasoning, formal logic
MATHS00

Long Documents Full books, academic pa-  Long-context learning

pers, multi-file projects

Table 4.1: Primary Data Categories in DeepSeek Pre-training Corpus

General Language Data:

General web text forms the backbone of almost every LLMs training corpus.
For DeepSecek, this includes standard sources such as:
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» Wikipedia broad factual coverage across topics.
* Books long-form narrative and expository writing.

* Filtered web crawls diverse styles and domains.

This data ensures the model develops core fluency in grammar, semantics,
and general knowledge retrieval, providing the baseline linguistic competence
necessary for all downstream tasks.

Programming Data:

A unique emphasis in DeepSeeks corpus is programming and computational
problem-solving data. This is especially critical for DeepSeek-Coder and
DeepSeek-R1, both of which aim to excel in generating correct, executable
code and solving algorithmic challenges. Programming data includes:

* Large-scale GitHub repositories covering diverse languages and
paradigms.

* Competitive programming datasets such as CodeContests, which fea-
ture highly challenging algorithmic problems requiring logical preci-
sion.

* Developer Q&A from sources like StackOverflow, capturing real-world
programming questions and solutions.

This component of the corpus teaches the model not only the syntax and se-
mantics of programming languages but also best practices, debugging strate-
gies, and real-world development patterns.

Mathematical and Reasoning Data:

The most distinctive aspect of DeepSeeks pre-training corpus is its heavy em-
phasis on mathematical and logical reasoning. Unlike general-purpose LLMs
that train primarily on natural language text, DeepSeek-R1 is explicitly de-
signed to excel in formal reasoning tasks. This requires substantial exposure
to:

* Math problem datasets like GSM8K (grade-school word problems) and
MATH (high school competition problems).

* Advanced math contests like AIME, which test multi-step reasoning un-
der strict logical constraints.
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e DeepSeeks own curated MATHS00 dataset, created specifically to
stress-test high-level mathematical reasoning.

» Codeforces problems, which blend algorithmic reasoning with practical
coding.

These datasets teach the model to break down complex problems into man-
ageable steps, apply formal rules consistently, and generate solutions that are
both logically valid and computationally precise.

Long Documents and Long-Context Learning:

To support DeepSeeks 128K-token context length, the corpus includes large
quantities of naturally long documents, including:

* Full-length books from Project Gutenberg and similar sources.

* Scientific papers, particularly in mathematics, physics, and computer
science.

* Multi-file programming projects that require cross-file understanding.

Training on naturally long documents is superior to artificially concatenating
short documents, as it preserves the natural long-range dependencies and dis-
course structures present in real-world data. This exposure is critical for en-
abling DeepSeek models to handle extended reasoning across large contexts,
such as working through entire scientific papers or tracing logic across files in
large codebases.

Corpus Balance and Weighting:

The proportion of each data type in the final corpus reflects the desired skill
profile of the model. For example, general language data might form the ma-
jority of tokens for early stages of training, but reasoning and coding data
receive progressively higher weights in later stages. Figure 4.1 illustrates a
typical staged weighting strategy.
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Figure 4.1: Evolving Token Mix During DeepSeek Pre-training

Domain-Specific and Specialized Content:

In addition to the core categories, DeepSeeks corpus also includes specialized
content from:

* Scientific and technical papers.
* Legal documents (for structured legal reasoning).

* Multilingual text (for cross-lingual abilities, though this is less empha-
sized in DeepSeek-R1).

These specialized domains enrich the models ability to reason within techni-
cal, scientific, and formal contexts, extending its versatility beyond everyday
conversational tasks.

Corpus Scale and Token Counts:

Though exact figures are rarely disclosed in full, public statements and typical
scaling patterns for competitive LLMs suggest that DeepSeeks corpus spans
several trillion tokens. Table 4.2 provides an estimated breakdown based on
comparable open models.
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Category Estimated Tokens
General Text 3.5T
Code 1.0T
Math 300B
Long Documents 200B

Table 4.2: Estimated Token Counts in DeepSeek Pre-training Corpus

The composition of DeepSeeks pre-training corpus reflects a deliberate
strategy to combine general-purpose language proficiency with domain-
specialized reasoning skills. By blending web text, code, and curated
mathematical content, DeepSeek ensures its models excel at both everyday
language tasks and advanced problem-solving challenges. This carefully
balanced corpus serves as the essential foundation upon which all other
training techniquesfrom model architecture to fine-tuning and reinforcement
learningare built.

4.2 Data Cleaning and Quality Filtering

The effectiveness of any large language model (LLM) is fundamentally linked
to the quality of its pre-training data. Even the most sophisticated model archi-
tectures, optimization algorithms, and hardware infrastructure cannot compen-
sate for poorly curated data. This is especially true for models like DeepSeek,
which target not only general linguistic fluency but also advanced reasoning,
mathematical competence, and coding accuracy. Achieving these goals re-
quires a corpus free from irrelevant noise, duplication, and low-quality content.
This section explains the techniques, processes, and theoretical reasoning be-
hind the data cleaning and quality filtering pipeline essential for replicating
DeepSeeks pre-training data preparation.

The Importance of Data Cleaning.

Raw data collected from public web crawls, code repositories, and reasoning
datasets is far from ready for direct use in LLM training. It often contains
noise such as:

* Duplicate documents appearing multiple times across different sites.

* Low-information content, including boilerplate web pages, navigation
menus, and SEO spam.
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* Encoding errors, broken formatting, and incomplete documents.

¢ Inconsistent formatting, especially in math and code data.

Training on noisy data wastes compute, reduces model efficiency, and leads to
degraded performance on both general tasks and specialized reasoning bench-
marks. Quality filtering is essential not only for optimizing training efficiency
but also for ensuring the model learns the correct distribution of high-quality
reasoning steps, coding practices, and mathematical logic.

Typical Data Cleaning Pipeline.

A standard LLM data cleaning pipeline consists of multiple stages, each ad-
dressing a different type of quality issue. Figure 4.2 visualizes a typical pro-
cess.

Raw Data Ingestion (Web Crawl,
Repositories, Benchmarks)

[

Document Segmentation
(Paragraph, Section Splitting)

|

Language Detection (Non-
target Language Removal)

Duplicate Detection and Removal

Heuristic Filters (Length,
Format, Domain Filtering)

Quality Scoring and Final Acceptance

Figure 4.2: Overview of a Data Cleaning Pipeline

Exact and Near-Duplicate Removal.

87



CHAPTER 4. PRE-TRAINING DATA AND CORPUS CURATION

Duplicate documents waste training capacity and bias the model toward over-
represented content. Deduplication occurs at two levels:

» Exact duplicates: Documents or files identical across all tokens.

* Near duplicates: Documents that differ only slightly, such as minor
formatting changes or slight edits.

For exact deduplication, simple hashing (e.g., SHA256) suffices. For near-
duplicates, techniques like MinHash, SimHash, or embedding-based similar-
ity search are applied. In code datasets, deduplication is even more critical, as
popular repositories (like sorting algorithm implementations) are cloned thou-
sands of times. Figure 4.3 illustrates the effect of deduplication on reducing
redundancy in a code corpus.
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Figure 4.3: Decline in Unique Token Ratio with Increasing Corpus Size (With-
out Deduplication)

Length and Structural Filtering.

Documents that are too short (single sentence fragments, empty files) or ex-
cessively long (logs or dumps) are filtered. Typical length thresholds:

e Minimum: 100 tokens.

* Maximum: 200K tokens (for books or multi-file concatenated projects).
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For code data, files dominated by boilerplate headers, licenses, or auto-
generated comments are also excluded.

Language Identification.

For multilingual corpora, language detection ensures that only content in the
desired languages (e.g., English, Chinese) passes through. This is commonly
done using tools like langdetect or fastText. Ambiguous cases (low-
confidence classification) are discarded to avoid contamination.

Heuristic and Rule-Based Filters.
DeepSeek -like pipelines also employ domain-specific heuristics. Examples:

* Removing pages with abnormal character distributions (too many non-
ASCII symbols in English data).

¢ Discarding documents with excessive boilerplate (menus, copyright no-
tices).

* Filtering out low-information content, e.g., cookie banners.

For math and code, ensuring files contain valid syntactic structures (well-
formed equations, compilable code) is particularly important.

Document Quality Scoring.
Beyond simple rule-based filters, more advanced pipelines apply trained qual-
ity models to estimate content usefulness. Quality models can be trained to
distinguish:

* High-quality prose vs keyword-stuffed spam.

* Well-documented code vs poorly commented, incomprehensible
scripts.

* Mathematically correct solutions vs erroneous ones.

These models output scores that help prioritize inclusion during data selection.
Case Study: Math Dataset Cleaning.

Mathematical datasets used by DeepSeek receive special handling:
* Ensure all problems have complete statements and answers.
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* Preserve step-by-step solutions where available.

» Check for consistent formatting of symbols and equations (e.g., LaTeX
rendering issues).

This ensures reasoning problems present a clear, logically valid process for
the model to learn from.

Balancing Recall and Precision in Filtering.

Overly aggressive filtering risks losing rare, valuable data (e.g., specialized
mathematical proofs). Under-filtering allows noise and low-quality content to
dilute training. Effective pipelines optimize this trade-off by:

» Using permissive filters initially (high recall).

* Applying stricter quality scoring at the final selection stage (high preci-
sion).

This staged approach preserves maximum signal while removing harmful
noise.

Quality Feedback Loops During Training.

The cleaning pipeline is not static. During early pre-training stages, perplexity
analysis reveals:

» Unexpected difficult documents (indicating low-quality data).

» Unexpected easy documents (indicating redundant or overly simple
data).

These signals feed back into the cleaning pipeline, gradually improving corpus
quality for future training runs.

Pre-training success depends not only on raw data volume but also on rigor-
ous quality control. DeepSeeks data cleaning pipeline reflects best practices
from the broader LLM community, enhanced with domain-specific strategies
for reasoning and code data. By combining deduplication, structural filtering,
content scoring, and iterative feedback, the pipeline ensures that DeepSeek
models learn from data that is clean, diverse, and well-matched to the reason-
ing challenges they are designed to solve.
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4.3 Training Techniques and Dataset Curation
(14.8 Trillion Tokens)

The pre-training of DeepSeek-V3 represents a large-scale undertaking, char-
acterized by the meticulous curation of a 14.8 trillion token dataset and the
deployment of advanced training methodologies. This dataset, sourced from
a diverse range of domains and languages, forms the bedrock for the model’s
comprehensive linguistic understanding. This section details the dataset cura-
tion strategies, including rigorous cleaning and deduplication procedures, and
elucidates the innovative training techniques employed to achieve stable and
efficient learning at this scale.

Dataset Curation: A 14.8 Trillion Token Corpus

The DeepSeek-V3 model is pre-trained on a massive dataset comprising 14.8
trillion tokens. This corpus is meticulously assembled from a wide array
of sources to ensure linguistic diversity and comprehensive coverage. Data
sources include:

» Traditional Textual Sources: Books, academic publications, and news
media.

* Web Content: Data extracted from diverse websites, social media plat-
forms, and online forums.

* Technical and Specialized Domains: Technical documentation, scien-

tific literature, code repositories, and expert Q&A datasets.

This multi-faceted data sourcing strategy ensures that the training corpus en-
compasses a broad spectrum of linguistic styles, topical domains, and cultural
contexts, which is crucial for the model’s generalization capabilities across
diverse downstream tasks.

Rigorous Data Preparation and Refinement

Data preparation for DeepSeek-V3 involves a multi-stage refinement process
to ensure high quality and eliminate redundancy. Key steps include:

1. Iterative Dataset Refinement: An iterative approach to enhance data
quality through multiple cycles of refinement:

e Deduplication: Aggressive near-duplicate detection and removal
to eliminate redundant content.
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e Filtering: Linguistic and semantic assessments to ensure high
document quality at individual and global levels, removing low-
quality domains and content.

* Remixing: Dataset balancing by incorporating content from un-
derrepresented domains to enhance inclusivity and diversity.

2. Bias Identification and Mitigation: Procedures to identify and mit-
igate subjective biases related to cultural or regional values. This in-
volves manual analysis of model underperformance in specific areas and
removal or adjustment of contentious content.

3. Language and Domain Classification: Natural Language Processing
(NLP) classifiers are used to tag data points with language and domain
labels, enabling balanced representation during training and preventing
over-dominance of specific languages or topics.

These rigorous curation steps ensure that the 14.8 trillion token dataset is not
only massive in scale but also of high quality and diversity, providing a robust
foundation for pre-training.

Advanced Training Techniques for Scalability and Efficiency

DeepSeek -V3 employs a suite of advanced training techniques to effectively
leverage its large-scale dataset and model architecture, ensuring both scalabil-
ity and training efficiency:

* Multi-Token Prediction (MTP): Instead of predicting only the next
token, DeepSeek-V3 utilizes a multi-token prediction objective. This
technique trains the model to predict multiple tokens concurrently, en-
hancing training efficiency and improving text generation fluency, par-
ticularly for code and math-related tasks. MTP also facilitates specu-
lative decoding for accelerated inference. DeepSeek-V3 employs a se-
quential MTP approach with shared embedding and output layers, in-
corporating specialized MTP modules to predict future tokens based on
current token representations.

* FP8 Mixed Precision Training: To manage computational demands
and reduce memory footprint, DeepSeek-V3 employs FP8 mixed-
precision training. This framework conducts most compute-intensive
operations in FP8, while maintaining critical computations in higher
precision (BF16 or FP32) for numerical stability. DeepSeek-V3
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utilizes fine-grained quantization methods, including tile-wise and
block-wise grouping with dynamic scaling, to address challenges of
underflow, overflow, and quantization errors inherent in FP8 training.
This approach achieves significant reductions in memory usage (over
50%) and computational cost, enabling efficient training of the 671B
parameter model.

¢ DualPipe Parallelism for Distributed Training: DeepSeek-V3 lever-
ages a cluster of 2048 H800 GPUs, employing “DualPipe” parallelism
to optimize distributed training. DualPipe is a pipeline parallelism algo-
rithm designed to maximize computation-communication overlap, re-
ducing GPU idle time and improving overall efficiency. Combined
with InfiniBand high-speed communication and NVLink, DualPipe fa-
cilitates efficient cross-node parameter synchronization, enabling stable
and scalable training across a large GPU cluster.

 Stable Training Optimization: To ensure training stability at scale,
DeepSeek-V3 employs careful optimization settings, including adaptive
gradient methods and tailored learning rate schedules with a warm-up
and decay phase. These strategies prevent loss spikes and maintain a
smooth training trajectory, crucial for convergence in large MoE mod-
els.

DeepSeek -V3’s training paradigm is notable for its efficiency and cost-
effectiveness. The model was pre-trained on 14.8 trillion tokens using ap-
proximately 2.788 million H800 GPU hours, at an estimated cost of around
$5.6 million USD. This efficiency is attributed to the synergistic combination
of architectural innovations (MoE with MLA), auxiliary-loss-free load bal-
ancing, multi-token prediction, and FP8 mixed-precision training, along with
optimized distributed training infrastructure. The remarkably stable training
process, devoid of irrecoverable loss spikes or rollbacks, further underscores
the robustness of DeepSeek-V3’s training methodology.

The training of DeepSeek-V3 exemplifies a holistic and innovative approach to
large language model development. The expansive and meticulously curated
14.8 trillion token dataset, combined with advanced training techniques such
as multi-token prediction, FP8 mixed precision, and DualPipe parallelism, es-
tablishes a new benchmark for training large-scale LLMs. This comprehen-
sive strategy not only enables DeepSeek-V3 to achieve state-of-the-art perfor-
mance but also demonstrates a pathway to scaling language models efficiently
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and cost-effectively, paving the way for future advancements in the field. The
emphasis on both data quality and algorithmic innovation in DeepSeek-V3’s
training process highlights a paradigm shift towards more sustainable and scal-
able large language model development.

4.4 Formatting and Tokenization

The process of formatting and tokenization serves as the final transformation
stage between raw pre-training data and the sequences consumed by the lan-
guage model during training. This step defines how every word, symbol,
equation, and programming statement is represented numerically. For large
language models (LLMs) like DeepSeek, proper tokenization is more than
a preprocessing detail—it directly influences learning efficiency, reasoning
capacity, and even downstream performance on specialized tasks. A model
cannot effectively reason about mathematical notation, programming logic,
or step-wise reasoning processes unless its tokenizer faithfully preserves these
structures.

Tokenization splits raw text into smaller units called tokens, which are then
mapped to integer indices in a fixed-size vocabulary. This allows language
models to process sequences of numbers rather than characters or words di-
rectly. For DeepSeek, which handles general text, code, and mathematical
reasoning, tokenization must balance several competing goals:

« Efficiently compress common words and symbols into single tokens.

 Preserve fine-grained distinctions for rare, technical terms (especially
in code and math).

* Support reasoning-specific formatting such as labeled steps, intermedi-
ate reflections, and logic chains.

The choice of tokenization method influences how much context fits into a
given window (measured in tokens), how fast training proceeds, and how well
the model handles non-standard text.

Byte Pair Encoding (BPE) DeepSeck uses Byte Pair Encoding (BPE), a sub-
word tokenization method that strikes a balance between a compact represen-
tation of common terms and flexibility to handle rare words. BPE iteratively
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merges the most common adjacent character pairs into new symbols, eventu-
ally forming a vocabulary of fixed size. This makes it particularly effective for
morphologically rich languages, mathematical expressions, and programming
syntax.

The BPE process can be visualized as follows:

Step Corpus Representation
Initial natural language processing
Split into characters naturallanguageprocessing

Merge frequent pairs ~ natural language processing (back to words)

Table 4.3: Example Process of Byte Pair Encoding

For models like DeepSeek, trained on multilingual text, code, and math, BPE
is trained on a balanced sample from all domains. This ensures no domain
(e.g., natural language vs. code) dominates tokenization behavior.

Vocabulary Size and Token Granularity DeepSeek ’s tokenizer uses a vo-
cabulary size of approximately 100,000 tokens, balancing:

 Sufficient granularity to handle diverse languages, including technical
and mathematical notation.

» Efficiency to minimize average sequence length in tokens.

This vocabulary size is larger than that of general-purpose models like GPT-2
(50,000 tokens) to account for DeepSeeks focus on code and reasoning data,
which contain many rare symbols and multi-character operators.

Special Formatting for Different Data Types DeepSeek ’s corpus spans mul-
tiple domains, each requiring tailored formatting rules before tokenization.

General Text.

 Standard plain text with minimal preprocessing.

e Minor normalization (unifying quotes, standardizing dashes).
Code.
¢ Preserves indentation to retain block structure.
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» Keeps special symbols intact ({, }, =>, etc.).

* Ensures that comments, docstrings, and metadata are correctly format-
ted to retain programming context.

Math.

¢ Converts all math content to a consistent LaTeX-like format.

* Ensures mathematical symbols map directly to individual tokens where
possible (e.g., 7, /, D.

* Cleans up OCR errors or alternate math notations (e.g., replacing
sqrt () with \sqrt{}).

Reasoning Chains.

* Inserts process markers such as:

<think> Step 1: Define variables </think>

* Treats these tags as atomic tokens in the final vocabulary, ensuring they
are preserved during processing and generation.

Reasoning Tags and Process Annotation A distinctive feature of DeepSeek’s
training corpus is its use of reasoning process tags. These explicitly indicate:

* Logical step progression.
» Reflection and verification points.

* Intermediate thoughts and subgoals.

For example:

<think> First, I will define the variables. </think>
<think> Next, I substitute values into the equation. </think>

Treating these tags as single tokens ensures:
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* The reasoning structure is preserved even if tokenization splits the sur-
rounding text.

* The model can easily identify, generate, and interpret reasoning steps.

Long-Context Handling During Tokenization DeepSeek supports context
lengths up to 128K tokens. When documents exceed this length, they must be
split. This is not simply truncation; to preserve logical and semantic continuity
across splits, DeepSeek applies:

* Overlapping context windows (e.g., 50-token overlap between seg-
ments).

¢ Continuation markers such as:

<cont> Continued from previous segment. </cont>

* This helps the model retain memory across long spans, especially in
math proofs or multi-file code projects.

Mathematical Expression Handling Mathematical expressions, especially
in competition math datasets (AIME, MATHS500), pose unique tokenization
challenges:

 Ensure operators (e.g., +, *;") are individual tokens.
* Handle multi-character symbols (e.g., \sqrt{}) as atomic units.

 Preserve correct nesting for fractions, integrals, matrices.

This is handled via pre-standardization, where all math content is normalized
into a canonical LaTeX-inspired format before tokenization.

Vocabulary Coverage Analysis Once tokenization is complete, it is essential
to check:

* Average sequence length across domains.
* Percentage of terms fully covered versus split into multiple tokens.

* Out-of-vocabulary (OOV) rate for each data type.
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Table 4.4 illustrates a hypothetical vocabulary coverage report for DeepSeek’s
corpus.

Domain Avg Tokens/Doc  Single-Token Coverage OOV Rate
General Text 1,200 94% 0.5%
Code 3,500 88% 1.5%
Math 800 82% 3.2%
Reasoning (with tags) 1,000 89% 2.1%

Table 4.4: Vocabulary Coverage Statistics Across Domains

Training a Custom Tokenizer To replicate DeepSeek’s training pipeline,
readers should:

* Collect a representative sample of the corpus.
» Use a standard BPE training tool (like SentencePiece).
* Set vocabulary size (e.g., 100K tokens).

* Predefine certain tokens (reasoning tags, math operators) to be atomic.

Sample command:

spm_train --input=corpus.txt --model_prefix=deepseek_bpe \
--vocab_size=100000 --character_coverage=1.0

Correct tokenization is one of the most underestimated aspects of large-scale
language model replication. For DeepSeek, preserving reasoning structure,
code formatting, and mathematical notation is essential to maintaining the
model’s reasoning capabilities. By combining domain-specific formatting
rules, special token handling, and customized BPE training, DeepSeek en-
sures its models learn from high-quality, logically structured input—the foun-
dation of their exceptional performance on reasoning and coding tasks.

4.5 Dataset Balancing and Weighting
The composition of a pre-training corpus for a large language model (LLM)
is not simply a matter of collecting a vast quantity of data. Each type of

datawhether general text, code, or mathematical reasoning problemsimparts
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different skills to the model. Controlling the balance between these sources
is critical to shaping the final models capabilities. DeepSeeks exceptional
performance in reasoning-centric tasks stems not just from the quality of its
data but also from the deliberate and evolving choices about ~ow much of each
type of data to expose the model to during training. This section details the
strategies used to balance DeepSeeks training corpus and explains how expert
readers can design their own weighting pipelines for replication.

Why Dataset Balancing Matters

At the heart of LLM training lies a fundamental trade-off: different types of
data promote different competencies. If pre-training is dominated by general
web text, the model develops broad factual knowledge and conversational flu-
ency. However, if reasoning-intensive data (math problems, algorithmic chal-
lenges) is underrepresented, the model will struggle with multi-step logical
inference.

The influence of dataset balance can be visualized as a performance trade-
off triangle, shown in Figure 4.4. Emphasizing one axis (e.g., conversational
fluency) may come at the expense of others (e.g., deep reasoning or formal
precision).

Conversational Fluency

Figure 4.4: The Performance Trade-off Triangle Influenced by Dataset Bal-
ancing

For general-purpose models like GPT-3 or LLaMA, the balance heavily favors
general text. DeepSeek, in contrast, specifically shifted toward reasoning and
programming data, resulting in models particularly adept at solving math and
logic problems.
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DeepSeek s Multi-Domain Data Sources

DeepSeek s corpus spans several major categories, each with its own educa-
tional value:

* General Text: Books, Wikipedia, filtered web documents.

¢ Programming Data: GitHub repositories, competitive programming
solutions.

¢ Mathematical and Reasoning Data: GSM8K, MATH, AIME,
MATHS500.

* Long Documents: Full books, academic papers, multi-file codebases.

Each domain contributes to different aspects of the final models skill set,
shown in Table 4.5.

Data Domain Primary Contribution

General Text Fluency, factual knowledge, commonsense reasoning
Programming Syntax mastery, algorithmic thinking, procedural logic
Math/Reasoning Multi-step inference, formal logic, symbolic reasoning

Long Documents  Discourse coherence, cross-section reference ability

Table 4.5: Skill Contributions from Different Data Sources

Fixed Proportion vs Curriculum Balancing

Two primary strategies exist for balancing datasets during training:

* Fixed Proportion: Every training batch contains a constant ratio of text,
code, and math samples.

e Curriculum Balancing: The data mixture evolves over time, starting
with simpler, general content and gradually increasing the proportion
of harder reasoning data.

DeepSeek s training likely followed a curriculum schedule resembling Fig-
ure 4.5, starting with general text to establish fluency, then gradually introduc-
ing more math and programming to sharpen reasoning.
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Figure 4.5: Hypothetical Curriculum Balancing Schedule for DeepSeek-R 1

Upsampling Specialized Reasoning Datasets

A critical aspect of DeepSeeks balance is the deliberate upsampling of rea-
soning benchmarks like GSM8K and MATHS500. These datasets represent
only a small fraction of the raw corpus but are extremely important for final
performance on DeepSeeks reasoning tasks. To ensure the model sees them
frequently, they are over-sampled relative to their natural occurrence.

This can be implemented programmatically:

sources = ["general", "code", "math"]
weights = [0.4, 0.3, 0.3] # during late-stage training
source = random.choices(sources, weights=weights) [0]

This guarantees every training batch contains a nontrivial amount of reasoning
data.

Within-Domain Weighting

Even within a single data type, balancing matters:

e Programming: Popular languages (Python, JavaScript) vs niche lan-
guages (Fortran, COBOL).

* Math: Simple arithmetic vs advanced proofs.

* Reasoning: Short 3-step problems vs multi-page derivations.
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DeepSeek likely applied some intra-domain weighting to ensure adequate ex-
posure to both simple and complex problems, avoiding overfitting to just one
class of reasoning.

Balancing Evaluation Signals

Dataset balance is also informed by continuous evaluation during training. If
the model performs poorly on math benchmarks mid-training, the pipeline
can respond by temporarily increasing math data sampling a form of adap-
tive curriculum. This creates a dynamic feedback loop between pre-training
performance and dataset weighting.

Long-Context Documents

To train DeepSeek for long-context reasoning (up to 128K tokens), long doc-
uments receive a stable proportion in every batch, ensuring the model con-
tinuously practices processing and understanding long-form content. These
documents are sampled directly rather than artificially concatenated, preserv-
ing natural discourse structure.

Balancing Challenges and Trade-offs

Overemphasizing any single domain risks:

e Domain overfitting (e.g., math-rich models losing conversational flu-
ency).

* Poor generalization to unseen tasks (overfitting to specific reasoning
templates).

Balancing is thus an iferative optimization process, continually refined based
on evaluation feedback and final task performance.

Dataset balancing and weighting play a foundational role in shaping a models
capabilities. DeepSeeks success at reasoning-intensive tasks stems directly
from its carefully curated balance between general fluency data, programming
challenges, mathematical problems, and long-context documents. Replicat-
ing DeepSeeks performance requires not only collecting similar data but also
closely mimicking its evolutionary curriculum ensuring the model sees the
right data, at the right time, in the right proportions.
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Chapter 5

Model Training Pipeline

This chapter presents the core training pipeline required to replicate
DeepSeeks model development process, covering the essential technical steps
from data streaming to distributed training and optimization. It explains
how DeepSeek manages large-scale data loading, initializes its transformer
architecture, applies mixed precision and memory-saving techniques, and
coordinates parallel training across multiple GPUs. By understanding the
optimization algorithms, loss tracking, and real-time evaluation methods
used during training, expert readers gain a complete view of the processes
needed to train DeepSeek-like models efficiently and reliably.

5.1 Preparing the Data Pipeline

The data pipeline is the first operational stage in the training process of a large
language model (LLM). While Chapter 4 covered how the pre-training corpus
is collected, cleaned, and tokenized, this section focuses on the engineering
pipeline responsible for efficiently feeding that data into the training system
itself. For DeepSeek-scale trainingwhere thousands of GPUs operate in paral-
lelthis pipeline must deliver token batches continuously, with minimal stalls,
while preserving the intended data mixture, document structure, and sequence
packing. This section outlines the techniques, formats, and performance opti-
mizations required to build such a pipeline.

From Cleaned Data to Training Batches. Once the data corpus is fully cu-
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rated and tokenized, it exists in the form of token sequences, typically grouped
into documents. These documents must be divided into shards that can be dis-
tributed across worker nodes in a training cluster. Each worker reads, shuffies,
and batches its assigned shard, producing sequences that match the models
expected input size, such as 4,096 or 128,000 tokens.

Storing Pre-processed Data Efficiently. Raw text files are unsuitable for
efficient streaming into GPUs at scale. Instead, pre-processed data is typically
stored in binary formats optimized for sequential reading. Common choices
include:

* TFRecord Originally from TensorFlow, widely used for sharded binary
data.

¢ Arrow Columnar format designed for fast access.

¢ Custom binary formats Many LLM teams build their own, optimized
for token sequences.

Each shard might contain thousands of tokenized documents, with metadata
indicating boundaries, document types, and any special tags such as reasoning
markers.

Sharding and Distribution. The corpus is split into multiple shards, typi-
cally one per worker. A cluster of 1,024 GPUs might operate with 256 nodes,
each handling 4 GPUs, so the corpus would be split into at least 256 shards,
with replication to guard against node failures. Each shard should contain a
representative sample of all data types (general text, code, math), preserving
the intended data balance.

Shard ID  Document Count  Domains Covered

Shard 0 10,000 Text, Code, Math
Shard 1 10,000 Text, Code, Math

Table 5.1: Example Shard Metadata

Shuffling Strategies. Shuffling is critical to prevent training artifacts caused
by domain clumping (where batches contain only math or only code). Shuf-
fling happens at two levels:
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* Global Shuffling: Performed once across the entire corpus before
sharding.

* Per-Shard Shuffling: Each worker re-shuffles its shard every epoch.
Global shuffling ensures domain mixing across the corpus, while per-shard
shuffling handles local randomness within each node.

Batch Packing and Sequence Formation. Since DeepSeek-R1 supports up
to 128K tokens per sequence, efficiently packing documents into those se-
quences is crucial to minimize wasted padding. Common strategies include:

* Document Packing: Multiple short documents packed into a single
sequence.

* Padding Minimization: Precompute packing layouts to minimize pad
tokens.

An example packing might look like:
[Docy, PAD, Docs, Docs, PAD]

Special boundary tokens (e.g., <doc_sep>) help the model distinguish be-
tween documents.

Handling Long Documents. Some documents (books, papers) exceed even
128K tokens. These require:

¢ Sliding Window Splits: Divide the document into overlapping win-
dows, preserving coherence across boundaries.

* Continuation Markers: Insert tokens like <cont> to signal that a new
segment is a continuation of the same document.

For example, a 300K token book could be split into:
Chunk; = [Start, ..., 128K tokens]
Chunky = [cont, . .., 128K tokens]

Pre-fetching and Streaming Optimization. To avoid starving the GPUs dur-
ing training, each worker maintains a prefetch queue that loads future batches
in the background while the current batch trains. Common pre-fetching opti-
mizations include:
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* Asynchronous I/O using dedicated data loader threads.
* Pinning memory to avoid page faults during transfer.

* Caching frequently accessed documents in RAM for reuse.

Disk Storage (shards) }—){ Data Loader }—){ Prefetch Queue }—){ Training GPU

Figure 5.1: Simplified Data Pipeline

Format Alignment with Model Inputs. Each training batch is ultimately a
structured object fed into the model. In the case of DeepSeek, batches contain:

 Token IDs (integer tensor of shape [batch size, sequence length]).
» Attention Masks (binary tensor masking padded positions).

» Expert Routing Information (for MoE models, indicating which tokens
go to which experts).

This alignment ensures that data feeding and model computation fit seam-
lessly.

MoE-Specific Batch Handling. In mixture-of-experts models, each token is
dynamically routed to a subset of model experts. This requires:

* Computing expert scores for each token.

* Generating expert assignment masks.

If routing is learned jointly with the model, this occurs inside the transformer
block. If precomputed routing is used (e.g., from external classifiers), routing
maps are part of the data pipeline itself.

Parallel Data Loading in Multi-Node Training. In distributed training, ev-
ery node loads its own data shard, but global synchronization ensures:

* All nodes apply the same global shuffle seed.

e Validation/test sets are identical across all nodes.
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This synchronization can be implemented using:

np.random.seed(global_seed + worker_rank)

This ensures shuffling remains globally consistent, preserving deterministic
evaluation.

Quality Control During Data Loading. During initial training, the pipeline
logs:

» Average tokens per batch (checking packing efficiency).
¢ Fraction of padding (high padding = wasted capacity).

* Domain distribution per batch (ensuring balanced sampling works cor-
rectly).

A sample log might look like:

[Batch 1045] tokens=128000 padding=3.2J, text=45% code=307% math=25%

The data pipeline is the unsung workhorse of LLM training, quietly ensuring
GPUs receive a steady supply of high-quality data in the right format and
sequence structure. DeepSeeks ability to train reasoning-focused models at
scale depends not just on good data, but on a high-performance pipeline that
respects document boundaries, preserves reasoning tags, packs sequences effi-
ciently, and streams continuously across thousands of GPUs. A well-designed
data pipeline is not just a technical detailit is an essential foundation for suc-
cessful model replication.

5.2 Model Initialization

The initialization of a large language model (LLM) defines the starting point
from which all learning begins. Proper initialization is critical to ensure stable
training, avoid early divergence, and provide a balanced learning environment
for all components of the model. In the case of DeepSeek-R1, which incorpo-
rates a combination of standard transformer layers and Mixture-of-Experts
(MoE) blocks, the initialization process must not only prepare traditional
transformer weights, but also account for expert routing, embedding consis-
tency, and positional encoding requirements. This section covers the essential
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processes and considerations required to correctly initialize a DeepSeek-like
model.

Overview of the DeepSeek-R1 Architecture
DeepSeek -R1 follows a decoder-only transformer design with 64 layers. Each

layer contains:

e Multi-head self-attention.

* A feedforward block, some of which are implemented as Mixture-of-
Experts (MoE) layers.

The model has a total parameter count of 671 billion, though only 37 billion
are active at any given time due to the sparse activation of MoE layers. The
vocabulary size is approximately 100,000 tokens, and the maximum context
length is 128,000 tokens. Positional information is handled using rotary posi-
tional embeddings (RoPE), which are dynamically applied at runtime rather
than learned.

Weight Initialization for Standard Layers

For layers outside of the MoE structure (attention heads, non-expert feedfor-
ward paths), DeepSeek-R1 follows common transformer initialization prac-
tices. These include:

e Xavier Initialization (also known as Glorot Initialization) for linear
layers.

* Initializing biases to zero in attention and feedforward layers.

 Scaling attention projection matrices based on the number of attention
heads.

Xavier Initialization, derived from the assumption that activations should
maintain consistent variance across layers, is defined as:

6 6
W~UL-
( \/din + dout7 \/din + dout)

This balances weight magnitudes according to input and output sizes, ensuring
activations neither explode nor vanish at initialization.

Embedding Initialization

108



5.2. MODEL INITIALIZATION

The input embedding matrix maps each token to a high-dimensional vector in
the model’s embedding space. This matrix must:

* Match the tokenizers vocabulary size.

* Use the same embeddings for input and output layers (known as tied
embeddings) to reduce parameter count.

The embeddings are typically initialized with a normal distribution:
Ez‘,j ~ N(07 0'2)

where 0 = % and d is the embedding dimension.

Positional Encoding: Rotary Embeddings

DeepSeek -R1 employs Rotary Positional Embeddings (RoPE), which do
not require a learnable embedding table. Instead, RoPE computes position-
dependent rotation matrices applied directly to query and key vectors during
attention calculations. This rotation preserves absolute positional information
while allowing graceful extrapolation to longer contexts.

The rotational matrix for position p and dimension d is given by:

10000~ 2k/d
O = ———
128000

This rotation is applied directly:
q'" = cos(pby) @) + sin(pfy,) g+
Because this process is fully deterministic, no positional embeddings need to

be stored in the model’s parameters. This reduces initialization complexity
and guarantees position handling is consistent across reinitializations.

Initializing Mixture-of-Experts (MoE) Layers

MOoE layers introduce additional complexity. Each MoE block contains:

* A set of feedforward experts (typically 128 experts in DeepSeek-R1).

* A router network that assigns tokens to a small subset of these experts.
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Each expert is initialized similarly to standard feedforward layers using Xavier
Initialization. However, the router weightsresponsible for expert selectionre-
quire specialized treatment.

Router Initialization

The router maps token representations to expert selection probabilities:

r= SOftmax<Wrouterm + brouter)

Special Token Initialization

DeepSeek models rely on a few special tokens, including:

* Padding token.
* Reasoning tags such as <think> and <proof>.

* Continuation markers for split long documents.

These tokens receive either random embeddings from the same initialization
distribution as normal tokens or predefined embeddings if preserving special
formatting (like the <think> structure) is critical.

Configuration File Example

{
"num_layers": 64,
"hidden_size": 8192,
"num_heads": 64,
"vocab_size": 100000,
"max_position_embeddings": 128000,
"moe": {
"num_experts": 128,
"top_k": 2
¥o

"position_embedding_type": "rope"

This file acts as the source of truth for both model construction and initializa-
tion.

Scaling Adjustments for Deep Models

For very deep transformers (over 60 layers), additional rescaling may be ap-
plied to attention and feedforward weights to maintain numerical stability:

w

V2L
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where L is the number of layers. This keeps gradients well-conditioned in
deep models, reducing the risk of gradient explosion or collapse.

Embedding Weight Tying

As is standard in large language models, DeepSeek ties the input embedding
matrix F to the output projection matrix used to compute next-token logits.
This reduces the total parameter count and enforces consistent token repre-
sentations across input and output. The final logits for token prediction are
computed as:

logits = ETh +b
where h is the final hidden state.

Initialization Verification

print (f"Embedding Norm: {model.embeddings.weight.norm().item():.4£f}")

print (f"Attention Weight Norm: {model.layers[0].self_attn.gkv_proj.weight.norm().
item():.4f}")

print (f"Router Bias Mean: {model.moe_layers[0].router.bias.mean().item():.4£f}")

These checks confirm that all critical weights are within expected ranges, and
no accidental overwrites or mis-scalings have occurred.

Model initialization is more than a bookkeeping stepit defines the numerical
landscape on which all future training occurs. For DeepSeek-R1, careful at-
tention to transformer weight initialization, expert balancing in MoE, special
token handling, and rotary positional encoding ensures stable early training,
avoids expert collapse, and maintains compatibility with the tokenization pro-
cess covered earlier. Reproducibility depends heavily on matching these ini-
tial conditions, making proper initialization essential to any serious attempt at
replication.

5.3 Distributed Training Infrastructure

Training DeepSeek-R1, a model with 671 billion parameters, across thousands
of GPUs requires an exceptionally efficient distributed training infrastructure.
No single GPU or even a small cluster of machines can hold a model of this
size entirely in memory. Consequently, DeepSeek relies on a combination of
distributed training techniques, collectively referred to as hybrid parallelism,
to split the model, the data, and the computational work across many GPUs.
This section explains the essential methods employed, providing expert read-
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ers with the knowledge necessary to design and operate a comparable dis-
tributed training pipeline.

Why Distributed Training is Essential

The scale of DeepSeek-R1 places it firmly within the category of models that
exceed any single hardware units capacity:

* The model weights alone exceed 2 terabytes in size.

* Processing 128K token sequences at reasonable batch sizes requires
multiple terabytes of GPU memory for activations.

« Efficient training requires batch sizes large enough to stabilize optimiza-
tion dynamics, which further inflates memory requirements.

Given these realities, distributing both the model and data across thousands
of GPUs is not optionalit is fundamental to enabling training at all.

Parallelism Strategies

There are four principal forms of parallelism employed in DeepSeeks dis-
tributed infrastructure:

Data Parallelism. In data parallelism (DP), each GPU processes a unique
slice of the training data while holding a full copy of the models parameters.
After each training step, gradients from all GPUs are averaged across the clus-
ter and applied uniformly to all parameter copies.

1 N
00-n > 0

i=1

where g; is the gradient computed on the ith GPU.

While simple and widely used, pure data parallelism is insufficient for models
as large as DeepSeek-R1. Even a single layer of the model exceeds the memory
capacity of modern GPUs, rendering data parallelism alone impractical.

Tensor Parallelism. Tensor parallelism (TP) addresses the memory bottle-
neck by splitting each individual layer across multiple GPUs. Each GPU
holds only a slice of the weight matrices, and computations (like matrix multi-
plications) are split accordingly. This requires communication between GPUs
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after every matrix multiplication step.

P
Y =XW =) XW,

i=1
where P is the number of tensor-parallel slices.

Tensor parallelism is especially effective in attention layers, where large pro-
jection matrices dominate memory consumption. However, TP increases com-
munication overhead, requiring careful tuning of GPU-to-GPU transfers to
avoid stalls.

Pipeline Parallelism. Pipeline parallelism (PP) splits the model vertically
across layers. One subset of GPUs holds the lower layers, another holds the
middle layers, and so on. Each batch of data flows sequentially through these
partitions, like cars moving through an assembly line.

y = fa(f3(f2(f1(2))))

where f; denotes different groups of layers, each handled by a distinct GPU
partition.

This approach allows very deep models to be split across many devices, though
it introduces pipeline bubblesperiods where some GPUs are idle while wait-
ing for upstream batches to complete. Pipeline bubbles can be reduced by
breaking each batch into micro-batches that flow concurrently.

Expert Parallelism. For MoE layers, even tensor-parallel GPUs cannot store
all experts. Instead, experts are themselves sharded across GPUs. During
training, each token is dynamically assigned to a small subset of experts (typ-
ically 2 out of 128 in DeepSeek-R1). These assignments trigger targeted
inter-GPU communication, where token activations flow to the responsible
expert GPUs.

houtput = Z Tk - Bk (hinput)

k€SelectedExperts

where E; denotes the kth expert and 7y, is its router-assigned weight.
Combining Parallelism: Hybrid Parallelism in DeepSeek

DeepSeek -R1 combines these techniques into a hybrid parallelism strategy:

* Data Parallelism: Each data-parallel group processes a different mini-
batch.
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* Tensor Parallelism: Each transformer layer is split across GPUs within
each group.

¢ Pipeline Parallelism: Different pipeline stages hold different groups of
layers.

« Expert Parallelism: MoE experts are further split across GPUs.

Pipeline Stage 1
Pipeline Stage 2 Tensor Slice B

Figure 5.2: Hybrid Parallelism Workflow

Data Shard 1
Data Shard 2

Tensor Slice A MOoE Experts

Communication Optimization with NCCL

Hybrid parallelism imposes extreme communication demands. Each training
step requires:

» Synchronizing gradients across data-parallel replicas.
* Transferring activations and gradients across tensor-parallel GPUs.
» Forwarding micro-batches across pipeline stages.

* Routing tokens between expert-parallel shards.

DeepSeek uses NVIDIA Collective Communication Library (NCCL),
heavily tuned for:

* Message size (matching network MTU).
* Overlapping communication with computation.

* Optimized collectives (AllReduce, AllGather, Scatter).

Pipeline Management with DualPipe

DeepSeek -Rls papers mention DualPipe, their custom pipeline engine.
Though full details are unpublished, its purpose is clear:
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* Coordinate hybrid parallelism across thousands of GPUs.
» Optimize pipeline scheduling to reduce idle bubbles.

* Overlap communication and computation to maximize throughput.

While DualPipe itself is proprietary, its principles can be emulated using open
frameworks like Megatron-LM or DeepSpeed.

Distributed Training Best Practices

Readers aiming to replicate DeepSeeks setup should adopt several best prac-
tices:

¢ Choose shard counts divisible by total GPUs to simplify scheduling.
 Use consistent global seeds for reproducibility across distributed runs.

* Log detailed profiling data (communication time, compute time, idle
time) to detect bottlenecks.

» Regularly checkpoint global states to recover gracefully from node fail-
ures.

Distributed training infrastructure is the hidden backbone of DeepSeeks suc-
cess. Training 671 billion parameters across thousands of GPUs requires a
carefully orchestrated dance of data parallelism, tensor parallelism, pipeline
segmentation, and dynamic expert routing. By understanding and correctly
combining these techniques, expert readers can construct their own scalable
infrastructure to train DeepSeek-scale models reliably and efficiently.

5.4 Mixed Precision and Memory Optimization

Training DeepSeek-R1, a model with 671 billion parameters and a 128K token
context window, requires not only vast computational power but also care-
ful attention to memory efficiency. Without specialized techniques to reduce
memory footprint, such a model would be infeasible to train even on the most
advanced hardware. This section explores how DeepSeek-R1 achieves this
through mixed precision training and complementary memory optimization
techniques, ensuring that the model fits across thousands of GPUs while main-
taining numerical stability and computational speed.
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The Importance of Mixed Precision in Large-Scale Training

Traditional deep learning relied heavily on full precision (FP32) arithmetic,
where each number uses 32 bits for storage and computation. While numeri-
cally stable, FP32 quickly becomes impractical as models scale beyond tens of
billions of parameters. For models like DeepSeek-R1, the memory consumed
by model weights, activations, gradients, and optimizer states would vastly
exceed the limits of modern GPUs if stored in FP32. Moreover, FP32 compu-
tations are slower on modern hardware compared to lower precision formats
optimized for tensor cores.

Mixed precision training addresses this by using lower-precision formats like
FP16, BF16, or FPS for the bulk of computations, while selectively retaining
FP32 precision where necessary. This technique can:

* Halve or quarter memory requirements for model weights and activa-
tions.

* Improve training throughput by exploiting hardware optimized for low
precision.

* Enable larger batch sizes, improving training stability.

Precision Formats and Trade-offs

The following table summarizes the primary precision formats used in large-
scale training:

Format Bits per Number Range Precision

FP32 32 Full Full

BF16 16 Same exponent range as Reduced precision
FP32

FP16 16 Narrower range Lower precision

FP8 8 Very narrow Lowest precision

Table 5.2: Comparison of precision formats

DeepSeek -R1 notably employs FP8 for weights and activations, a more ag-
gressive choice than the FP16 or BF16 used in earlier large models like GPT-3
or PaLM. FP8s tiny memory footprint makes it highly attractive for enormous
models, but it demands careful handling to avoid severe numerical instability.

The Mixed Precision Training Process

In practice, mixed precision training operates at three levels:
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1. Model Weights and Forward Pass: Stored and computed in lower pre-
cision (FP8/FP16/BF16).

2. Gradients: Accumulated in higher precision (often FP16 or BF16) to
maintain sufficient numerical stability.

3. Loss and Optimizer State: Maintained in full FP32 precision to ensure
small updates are not lost due to rounding.

This can be illustrated in the training loop:

with autocast(device_type="cuda", dtype=torch.float8_e4m3):
output = model (input)
loss = loss_fn(output, target)

scaler.scale(loss) .backward() # Apply dynamic loss scaling
scaler.step(optimizer)
scaler.update ()

This example shows PyTorchs autocast and GradScaler in action, though
DeepSeeks real pipeline (likely implemented with custom DualPipe logic) is
more complex.

FP8: Challenges and Adaptations

FP8 provides extreme memory savings, but its limited precision and range
make it difficult to apply directly to all components. DeepSeek-R1 likely
adopts:

¢ Per-tensor dynamic scaling to adapt numerical ranges on the fly.

* Higher precision for certain sensitive computations (softmax, layer nor-
malization).

 Gradual transition to lower precision during early warmup epochs.

Per-tensor scaling, for example, applies:

W

scale
where scale is dynamically chosen to fit the tensor into FP8s limited range.
Memory Savings from Mixed Precision

The impact of mixed precision on memory is dramatic, as shown below:
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Data Type FP32 Memory (GB) FP8 Memory (GB)
Model Weights 2,600 650

Gradients 2,600 650

Optimizer States 5,200 1,300

Table 5.3: Memory footprint for DeepSeek-R1 at different precisions

The 4x savings from FPS is essential for fitting the model across 10,000 GPUs
while maintaining workable batch sizes and context lengths.

Gradient Checkpointing

Even with mixed precision, memory remains a bottleneck when training on
long sequences. In standard backpropagation, activations from every layer
are retained in memory to compute gradients. This becomes impractical for
DeepSeek-R1s 128K token context.

Gradient checkpointing reduces memory consumption by saving only a frac-
tion of activations and recomputing the rest during backpropagation. This
trades some compute for dramatic memory savings.

oL _ oLy
or 0Oy Oz

Instead of storing y, the forward pass for y = f(z) is repeated during back-
propagation.

from torch.utils.checkpoint import checkpoint
output = checkpoint(layer, input)

Activation Packing and Offloading

For exceptionally long sequences, DeepSeek may further apply:

¢ Packing multiple shorter documents into a single sequence to reduce
padding overhead.

* Offloading activations to CPU memory during training, though this is
slower than keeping them on GPU.

Activation offloading looks like:

activations = activations.cpu()
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This technique is typically a last resort when dealing with extreme context
lengths like 128K tokens.

Combining Techniques: An Integrated Pipeline
DeepSeek -R1s final memory management stack likely resembles:
* Weights stored in FPS.
* Gradients accumulated in BF16.
* Loss and optimizer states maintained in FP32.
* Activations checkpointed every few layers.
* Activations optionally offloaded for very long sequences.

* Per-tensor dynamic scaling for FPS§ tensors.

Weights (FPS)

] Gradients (BF16) \

Checkpointing

’ Optimizer State (FP32) ‘

Figure 5.3: DeepSeek -R1 Memory and Precision Strategy

Performance Impact of Mixed Precision

Beyond memory savings, mixed precision also accelerates training by en-
abling tensor core operations:

» FP8 tensor core matmuls are up to 4x faster than FP32.

* This acceleration compounds across thousands of GPUs.

This dual benefitfaster training and smaller memory footprintis why mixed
precision is essential for DeepSeek-R1.
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Training a 671 billion-parameter model with 128K context length is impossi-
ble without aggressive precision and memory optimization. Mixed precision
training using FP8, combined with gradient checkpointing and optional acti-
vation offloading, allows DeepSeek-R1 to fit within available hardware while
maintaining reasonable batch sizes and training speeds. Mastering this deli-
cate balance is essential for anyone seeking to replicate DeepSeeks infrastruc-
ture, making mixed precision one of the cornerstones of modern large-scale
language model training.

5.5 Optimization Algorithms and Learning
Schedule

The success of training DeepSeek-R1, a large language model with 671 billion
parameters, depends critically on the choice of optimization algorithm and the
design of an appropriate learning rate schedule. These decisions influence not
only the speed of convergence but also the final performance and stability of
the model. With extreme-scale models, poor optimization choices can lead
to catastrophic divergence, slow training, or suboptimal generalization. This
section explains the optimizer selection, learning rate strategies, and regular-
ization techniques used in training DeepSeek-R1, providing expert readers
with the tools needed to design robust optimization pipelines for models of
similar scale.

Why Optimization Matters at Scale

Large-scale models amplify optimization challenges in several ways:

 Each training step involves billions of weight updates, so small numer-
ical errors accumulate rapidly.

 Diverse training data (text, code, math) introduces domain shifts, mak-
ing fixed learning rates unreliable.

* Sparse Mixture-of-Experts (MoE) adds further instabilityonly a small
subset of experts are updated per token, introducing uneven gradient
flow.

» Large batch sizes (necessary for distributed training efficiency) reduce
per-step gradient variance, changing the dynamics of optimization.
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For these reasons, DeepSeek-R1 requires a combination of adaptive optimiza-
tion, careful regularization, and dynamic learning rate adjustment.

AdamW: The Optimizer of Choice

DeepSeek -R1 uses the AdamW optimizer, which has become the standard
for large-scale transformer training. AdamW combines the adaptive learning
rates of Adam with explicit weight decay regularization, striking a balance
between fast convergence and weight norm control.

The AdamW update equations are:
my = frmi—1 + (1 — B1)ge

vy = Bovi—1 + (1 — B2)g7

N my N Ut
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where:

* g is the gradient at step .

¢ m; and v; are first and second moment estimates.
* 7 is the learning rate.

* )\ is the weight decay coefficient.

Learning Rate Warmup and Cosine Decay

Large models are notoriously sensitive to learning rates. Starting with a large
learning rate risks destabilizing early layers before useful feature representa-
tions have formed. Therefore, DeepSeek-R1 applies a learning rate schedule
composed of:

1. Linear Warmup: Gradual increase from near-zero to peak learning
rate.

2. Cosine Decay: Smooth reduction after warmup to very small final rates.
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The learning rate at step ¢ during warmup (total warmup steps 7,) is:

t
Ne = Tiu, * Tmax

After warmup, the learning rate follows a cosine schedule over T total steps:

= i + 5 ) (14 cos (L
Mt = Tlmin 9 TImax TImin Cos T_ Tw’lT

This smooth decay encourages stable convergence during late training.
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Figure 5.4: Example warmup and cosine decay schedule

Regularization Techniques
Even with proper learning rates, large models require regularization to prevent

overfitting and instability. DeepSeek-R1 employs:

* Weight Decay: Built into AdamW, controlling parameter growth.

* Gradient Clipping: Applied during gradient aggregation to prevent
outlier gradients from destabilizing updates:

g

llgll
max (1’ clip threshold

g <
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* Embedding Dropout: Small random dropout applied to input embed-
dings, helpful when the corpus mixes diverse domains (natural text,
code, math).

ZeRO: Optimizer State Partitioning

Storing optimizer states (first and second moment estimates for AdamW) for
a 671 billion-parameter model is infeasible without specialized techniques.
DeepSeek-R1 likely employs the ZeRO Optimizer, which splits these states
across GPUs. For example:

GPU 0: [Params 0-25%]
GPU 1: [Params 25-50%]
GPU 2: [Params 50-75%]
GPU 3: [Params 75-100%]

Each GPU only updates its own portion, reducing memory pressure.
Layer-wise Learning Rate Scaling

DeepSeek -R1’s depth (64 layers) also motivates adjusting learning rates
across layers. Upper layers typically receive smaller updates than lower layers:

_m

ﬂz—\ﬁ

This scaling prevents higher layers from diverging while the lower layers con-
verge faster.

Dynamic Loss Scaling

Since DeepSeek-R1 uses mixed precision (covered in Section 5.4), gradients
can suffer underflow at low precision. Dynamic loss scaling combats this:

« Initially scale the loss by a large factor (e.g., 2'°).
* If gradients overflow, lower the scale.

* If gradients remain stable, gradually raise the scale.

loss = scaler.scale(loss)
loss.backward ()
scaler.step(optimizer)
scaler.update()

Checkpointing and Recovery

123




CHAPTER 5. MODEL TRAINING PIPELINE

DeepSeek -R1s training spans weeks, so failures are inevitable. Checkpoints
include:

* Model weights.
» Optimizer state (including moments and learning rate).
* Loss scale.
¢ Random seeds (for deterministic resumption).
Monitoring and Diagnosis
Every training step logs:

Step 194800 | LR 1.3e-4 | Loss 2.91 | GradNorm 0.42 | LossScale 2048
This allows:

* Detecting divergence.
¢ Identifying learning rate schedule mistakes.

* Monitoring gradient explosion (grad norm) and precision issues (loss
scale).

DeepSeek -R1s optimization strategy integrates:

* AdamW optimizer with ZeRO state partitioning.
* Learning rate warmup followed by cosine decay.

* Regularization via weight decay, gradient clipping, and embedding
dropout.

* Layer-wise learning rate adjustments for deep transformers.

* Dynamic loss scaling to stabilize mixed precision.

This careful orchestration ensures the model converges reliably across trillions
of tokens, delivering both efficiency and robustness.

Effective optimization is not a secondary concern in large-scale trainingit is
a first-class engineering and scientific challenge. For expert readers seeking
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to replicate DeepSeek-R1, this section offers a comprehensive blueprint cov-
ering every stage of the optimization lifecycle, from initial learning rate tun-
ing to loss scaling and distributed optimizer partitioning. Mastering these
techniques is essential to successful training at the frontier of language model
scale.

5.6 Loss Computation and Tracking

In the development and training of large language models such as DeepSeek-
R1, the loss function serves not only as a fundamental mathematical objective
but also as a critical diagnostic signal for model health, training stability, and
optimization effectiveness. Loss computation is tightly integrated into every
forward and backward pass of the training pipeline, and its continuous tracking
forms the backbone of both real-time monitoring and post-training analysis.
This section delves into the theoretical foundation, practical implementation,
and operational significance of loss computation and tracking for DeepSeek-
R1s large-scale pre-training process.

Loss Function in Causal Language Modeling

DeepSeek -R1s pre-training objective is based on the widely used causal lan-
guage modeling (CLM) task, which requires the model to predict the next
token given all previous tokens in a sequence. Mathematically, this is framed
as a conditional probability:

po(xs | 21,22, ..., Te—1)

The training loss is the negative log-likelihood over the training corpus, aver-
aged across all tokens:

N
1
L= —Nglogpe(wt | T1,T2,. .. 73€t—1)

This formulation directly reflects the language modeling task, rewarding mod-
els that assign high probability to the correct next token and penalizing in-
correct predictions. The loss is computed per batch, with each GPU in a dis-
tributed setup computing its own local loss.

Token Masking and Special Handling

While the loss objective applies to most tokens equally, some tokens may be
masked from loss calculation for specific reasons:
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 Padding tokens added to align sequences within a batch.
* Special control tokens (e.g., document separators, metadata markers).

* Formatting tags such as <think> used to annotate reasoning traces.

In these cases, the loss for these tokens is effectively ignored:

1 N

L= War ¢ M)logpp( | 2<r)
unmasked =1

where M is the set of masked tokens.
Distributed Loss Aggregation

Training DeepSeek-R1 spans thousands of GPUs, each processing a distinct
data shard. Each GPU computes its local batch loss, which is then aggregated
across all GPUs to compute a global average loss:

1 K
£global = K Z Ek
k=1

This aggregation relies on synchronized collective communication (usually
via NCCL) to ensure all nodes contribute equally to the global loss. The global
loss is logged centrally for training progress tracking.

Impact of Mixed Precision on Loss Computation

As discussed in Section 5.4, DeepSeek-R1 trains using mixed precision, where
forward activations, gradients, and optimizer states use lower precision (FPS,
BF16). However, the loss itself is often computed in full FP32 precision to
preserve numerical accuracy:

N
1
L= N ;108’?9(% | 7<)
Dynamic loss scaling (DLS) is applied to maintain stable gradients:
L=S-L

where S is the dynamic scale factor adjusted based on detected under-
flows/overflows in gradients.
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Per-Domain Loss Tracking

Because DeepSeek-R1s corpus mixes diverse data sourcesnatural language,
code, math problems, and reasoning datathe training pipeline tracks separate
losses for each domain. This allows for domain-specific diagnostics:

L= XiLq

deD

where D denotes the set of domains and A4 controls the contribution of each
domain to the total loss. This enables analysis like:

Domain Initial Loss ~ Current Loss
General Text 4.7 2.6
Code 55 3.0
Math 6.0 35

Table 5.4: Domain-specific loss tracking during training

Real-time Loss Monitoring and Visualization

The global loss and domain-specific losses are logged at each training step:

Step 142800 | Loss 2.857 | Math Loss 3.55 | Code Loss 2.98 | LR 1.24e-4

These logs feed into a real-time visualization dashboard, which displays:

* Current loss (global and per domain).

¢ Smoothed loss curve over time.

e Learning rate curve.

* Gradient norms (for detecting divergence).

This combination provides a live diagnostic window for monitoring model
health.
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Figure 5.5: Example training loss curve

Loss Spikes and Anomaly Detection

Abrupt increases in loss indicate severe training pathologies:

 Batch contamination (evaluation data leaking into training set).
* Gradient explosion due to numerical instability.
* Distributed synchronization failures.

The training pipeline automatically triggers alerts if the loss jumps unexpect-
edly by more than a set threshold (e.g., 20% in one step).

Evaluation Loss Tracking

Periodic evaluation on held-out validation data provides a complementary sig-
nal:

Neva
1
Lot =~ E log po (¢ | T<¢)
eval =1

Unlike training loss, evaluation loss:

» Uses fixed data (never sampled during training).

* Tracks generalization, rather than memorization.
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If the gap between training and evaluation loss widens too much, overfitting
is suspected.

Post-training Loss Analysis

After training, complete loss logs are analyzed for retrospective insights:

* Did certain domains converge faster than others?

* Were there loss spikes linked to infrastructure events (e.g., hardware
failure)?

* Were learning rate transitions (e.g., after warmup) correlated with no-
ticeable loss changes?

These insights directly inform hyperparameter tuning for future model ver-
sions.

Loss computation and tracking is far more than just a number printed at each
training step. For DeepSeek-R1, it is a core diagnostic instrument that reflects
the health of optimization, the balance across training domains, the quality
of data, and the numerical stability of the distributed training pipeline. Ex-
pert readers replicating DeepSeek-R1 should treat loss tracking as an integral
component of the training pipeline, not a secondary reporting feature. Effec-
tive monitoring of loss curves, domain-specific losses, and periodic evaluation
metrics is essential to diagnosing and correcting potential problems before
they cascade into full-scale training failure.

5.7 Periodic Evaluation During Training

Periodic evaluation during the training of large language models such as
DeepSeek-R1 is a fundamental component of any rigorous training pipeline.
While training loss provides immediate feedback on how well the model is
fitting the training data, it is insufficient for understanding generalization the
models ability to handle unseen data and demonstrate robust reasoning across
diverse domains. This section details how DeepSeek-R1 performs regular
evaluation runs, how evaluation data is selected, which metrics are tracked,
and how evaluation results feed back into model tuning, early stopping deci-
sions, and quality assurance processes.

Purpose and Role of Periodic Evaluation
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During training, models continuously optimize their parameters to minimize
a training loss function, often computed on batches sampled directly from the
training corpus. However, this training loss reflects how well the model mem-
orizes or fits the training distribution, not how well it generalizes. Periodic
evaluation addresses this gap by testing the model on a fixed evaluation set
not used for training.

Periodic evaluation serves multiple purposes:

¢ Detecting overfitting: By comparing training loss to evaluation loss,
researchers can assess whether the model is learning general patterns
or merely memorizing.

* Monitoring domain-specific skills: DeepSeek-R1 is trained across
text, code, and mathematics; periodic evaluation tracks how perfor-
mance evolves in each domain.

* Diagnosing data contamination: If evaluation loss suddenly drops
suspiciously, it may indicate accidental contamination between training
and evaluation data.

* Guiding early stopping: If evaluation loss plateaus while training loss
continues to improve, it may signal diminishing returns, justifying early
stopping.

Evaluation Frequency and Scheduling

DeepSeek -R1s training spans trillions of tokens and multiple weeks, so eval-
uation is scheduled periodically rather than continuously. Typical practices
include:

* Running evaluation every N steps, where N might range from 5,000 to
50,000 depending on training speed.

* Running evaluation whenever the learning rate schedule undergoes a
significant shift (end of warmup, midway decay, etc.).

* Performing comprehensive evaluation after significant architectural

changes, such as swapping expert routing strategies in the Mixture-of-
Experts framework.
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By maintaining a regular cadence, the training team can maintain up-to-date
visibility into the evolving generalization capabilities of the model.

Design of the Evaluation Set

The quality and balance of the evaluation set are critical to meaningful evalu-
ation. DeepSeek-R1s evaluation set reflects the diverse domains represented
in pre-training:

* General language (news articles, encyclopedias, web pages)
* Programming problems (code completion, function generation)

* Mathematical reasoning problems (word problems, competition-style
logic problems)

Domain Proportion in Training Proportion in Evaluation
General Text 50% 50%
Code 25% 25%
Math 25% 25%

Table 5.5: Domain balance between training and evaluation sets

To ensure robustness, DeepSeeks evaluation set is carefully curated to avoid
overlap with the training data. This requires thorough deduplication, using
techniques such as:

* Exact deduplication (byte-for-byte matches).

* Near deduplication (document clustering based on high overlap in token
sequences).

Evaluation Metrics

The primary metric for periodic evaluation is the same cross-entropy loss used
during training, applied to the held-out evaluation set:

N
1
Leva = _N ;logpe(xt | x<t)

However, DeepSeek also tracks domain-specific metrics:
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* For code: Pass@k the proportion of programming problems solved cor-
rectly within the models top-k generated solutions.

* For math: Stepwise accuracy the proportion of intermediate reasoning
steps that match gold-standard solutions.

* For general text: Perplexity the exponential of the average negative
log-likelihood across all tokens.

Distributed Evaluation Process

Periodic evaluation in DeepSeek-R1 does not pause training. Instead, evalua-
tion runs on a dedicated evaluation cluster, reading model checkpoints from
shared storage. This asynchronous process ensures training throughput is un-
affected while maintaining regular performance monitoring.

The process is illustrated in Figure 5.6.

Training Cluster }—){ Checkpoint Storage }—){ Evaluation Cluster

Evaluation Results

Figure 5.6: Asynchronous evaluation pipeline

Tracking Training vs. Evaluation Loss

A crucial goal of periodic evaluation is to track the gap between training and
evaluation loss. This gap reveals:

* Healthy learning: Both losses decrease in parallel.
* Overfitting: Training loss decreases much faster than evaluation loss.

* Data contamination: Evaluation loss drops suspiciously (suggesting
accidental overlap with training data).
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Figure 5.7: Example training vs evaluation loss

Periodic Performance Reports

After each evaluation run, a structured report is generated, summarizing:

 Current training step.
* Overall evaluation loss.
* Domain-specific metrics (pass @k for code, math accuracy, etc.).

* Trends relative to previous checkpoints.

Example:

Step: 320000

Eval Loss: 3.62
Pass@1 (code): 0.55
Pass@5 (code): 0.73
Math Accuracy: 82.1%

Role in Early Stopping Decisions

Periodic evaluation results feed directly into the decision process for early
stopping. If evaluation loss flattens and domain-specific metrics show di-
minishing returns, further training may waste computational resources. Con-
versely, if a significant domain gap remains (e.g., code underperforms relative
to text), curriculum adjustments may be made instead.
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Periodic evaluation transforms training from a blind optimization loop into a
guided, evidence-based process. By separating training loss (fit) from eval-
uation loss (generalization), DeepSeek-R1 ensures its reasoning capabilities
emerge not just as artifacts of the training data but as true general cognitive
abilities. Expert readers replicating DeepSeek-R1s training pipeline should
view periodic evaluation not as an optional add-on but as an essential mecha-
nism for quality control, scientific analysis, and responsible scaling.

134



Chapter 6

Evaluation and
Benchmarking

This chapter explains how model performance is evaluated across all key
stages, from pre-training to final reasoning assessment. It introduces the es-
sential metrics for tracking fluency, reasoning quality, and code generation ac-
curacy, along with the benchmark suite used for systematic testing. The chap-
ter also covers how performance is validated through public leaderboards
and reasoning-specific tests, ensuring reliable comparisons with both earlier
versions and external models.

6.1 Core Evaluation Metrics

Evaluation metrics play a central role in the development, training, and bench-
marking of large language models. These metrics serve as quantitative signals
that guide decisions throughout the entire lifecycle of a modelfrom early pre-
training diagnostics to final performance comparisons with external systems.
In large-scale language model development, there is no single metric that can
fully capture performance across all dimensions, so a multi-metric evaluation
strategy is essential. This section introduces the core evaluation metrics used
to assess fluency, reasoning capability, and code generation accuracy. To-
gether, these metrics offer a comprehensive view of how well the model per-
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forms both linguistically and logically, as well as its ability to produce reliable
outputs in task-specific contexts such as programming.

Perplexity: The Core Fluency Metric

Perplexity is the most fundamental metric for evaluating language model qual-
ity during pre-training. It measures how well a model predicts the next token
given the preceding tokens. The formal definition of perplexity for a dataset
of N tokens is:

N
1
Perplexity = exp <_N Zlogpg(act | 21, 22,. .. ,xt1)>

t=1

This expression computes the average log-probability assigned by the model
to the correct tokens, then exponentiates the negative average to produce a
measure in the range [1, c0), where lower is better.

Why Perplexity Matters

Perplexity captures the models ability to represent the statistical structure of
natural language. A low perplexity indicates that the model can predict likely
tokens with high confidence, while high perplexity signals uncertainty or con-
fusion. In early training stages, perplexity often drops steeply as the model
learns basic language patterns (e.g., syntax and word order). In later stages,
the rate of improvement slows as the model focuses on more subtle patterns
like discourse coherence, factual knowledge, and complex reasoning.

Perplexity Trends During Training
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Figure 6.1: Typical perplexity curve during pre-training

A steadily decreasing perplexity confirms the model is learning, but extremely
low perplexity may indicate overfittingespecially if evaluation perplexity stalls
or worsens.

Pass@k: Functional Accuracy for Code Generation

Perplexity is insufficient to evaluate performance on structured tasks such as
code generation. For code, correctness is binary: a program either solves
a problem or it does not. The standard metric for this type of evaluation is
pass @k, which measures how often at least one of the models top-k generated
solutions is correct.

Formal Definition

Given a set of programming problems, the model generates k independent
solutions for each. Pass@k is the fraction of problems for which at least one
of the solutions is correct:

# problems solved by at least one solution
total problems

pass@k =

Example Calculation

If the model is evaluated on 100 coding problems, generating 5 solutions per
problem, and 72 problems are solved correctly by at least one solution, the

137



CHAPTER 6. EVALUATION AND BENCHMARKING

pass@5 score is:
72

— =0.72
100

Metric Score
pass@1 0.53
pass@5 0.72
pass@10 0.81

Table 6.1: Example pass@k scores on code generation benchmark

Why Pass@k is Important

Pass @k recognizes that in creative domains like programming, there are many
possible correct solutions. A model should not be penalized if its first output
is imperfect, provided it can generate a correct answer within k tries. This re-
flects realistic coding scenarios, where developers refine and retry code before
achieving correctness.

Stepwise Reasoning Accuracy

For reasoning tasks (e.g., mathematical problem solving), correctness is more
than just getting the final answer right. What matters is the entire reasoning
process. This is especially true for complex multi-step problems where in-
termediate logic must be correct for the final answer to make sense. Deep
reasoning evaluation tracks:

* Correctness of intermediate steps.
* Logical coherence between steps.

 Consistency when solving similar problems with different phrasing.

Example (GSM8K Problem)

John has 12 apples. He gives 4 apples to his friend and buys 7 more. How
many apples does John have now?

A reasoning-capable model should produce:

Step 1: Start with 12 apples.

Step 2: Subtract 4 apples given away.

Step 3: Add 7 apples bought.

Step 4: Final count = 12 - 4 + 7 = 15 apples.
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Each step can be evaluated for logical correctness, and the whole process re-
ceives a stepwise accuracy score.

Reasoning-Specific Tags

To enhance reasoning transparency, models can be trained to output structured
reasoning traces using special tags, e.g.,

(think)reasoning step(/think)

This makes it easier to evaluate not just final answers but the thinking process
itself.

Benchmark-Derived Composite Scores

In addition to atomic metrics like perplexity or pass @k, evaluation often ag-
gregates performance across entire standardized benchmark suites. For exam-
ple:

Benchmark Score
GSMBK (math) 87%
HumanEval (code) 72%

TriviaQA (knowledge) 78%

Table 6.2: Example benchmark results

These scores are useful for communicating progress to non-technical audi-
ences, but they should not replace fine-grained metric tracking during training.

Why a Multi-Metric Approach is Essential

No single metric can capture the full competence of a large language model:

* Perplexity measures fluency but ignores correctness.
* Pass@k measures correctness but ignores fluency.

» Stepwise accuracy captures reasoning but not general linguistic quality.

To fully understand a models capabilities and limitations, researchers must
track:

{Perplexity, Pass @k, Stepwise Accuracy, Benchmark Scores}
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Figure 6.2: Comparison across different metrics

This section introduced the core evaluation metrics essential for understand-
ing model progress and ensuring reliable performance across domains. Expert
readers should integrate these metrics into their own training pipelines, con-
tinuously tracking not only language fluency but also functional correctness
and stepwise reasoning. Only by maintaining a diverse evaluation strategy can
large language models achieve balanced competence, ensuring robustness in
both linguistic and logical tasks.

6.2 Benchmark Suite

The evaluation of large language models relies heavily on benchmark suite-
spredefined sets of tasks designed to probe specific capabilities, from language
fluency to multi-step reasoning, programming proficiency, and factual knowl-
edge retrieval. While core metrics such as perplexity provide valuable insights
into the statistical quality of a models predictions, benchmarks enable a more
holistic and domain-specific evaluation. This section details the benchmark
suite used to evaluate the models described in this book, explaining the ra-
tionale behind each selection, the skills it measures, and the pre-processing
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required to ensure reproducibility in evaluation.

The Purpose of Benchmark Evaluation

Benchmarks serve as standard reference points that allow models to be com-
pared not only to their predecessors, but also to other publicly available mod-
els. Well-constructed benchmarks focus on real-world tasks that are represen-
tative of how users interact with language models. In practice, a benchmark
suite serves multiple purposes:

* Providing a stable, external point of comparison across development
cycles.

 Capturing task-specific performance beyond general fluency.

* Highlighting domain strengths and weaknesses (e.g., mathematical rea-
soning versus code generation).

 Ensuring that evaluation remains stable over time, avoiding metric drift
from changing internal test sets.

Mathematical Reasoning Benchmarks

Mathematical reasoning is a key area of focus for modern models, especially
those designed for reasoning-centric applications. The benchmark suite in-
cludes:

GSMS8K A benchmark consisting of grade-school math word problems.
Each problem requires several simple reasoning steps, such as arithmetic cal-
culations, to arrive at the correct answer. Models are expected to break prob-
lems into steps, reason about intermediate results, and compute final answers.

MATHS00 A more advanced benchmark, consisting of competition-level
math problems drawn from sources such as the American Mathematics Com-
petitions. These problems require abstract thinking, multi-step reasoning, and
symbolic manipulation.
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AIME Problems sourced from the American Invitational Mathematics Ex-
amination (AIME). These are designed to challenge the upper limits of high
school mathematical ability, requiring both creative insight and rigorous logic.

Benchmark  Difficulty  Steps Required = Example Task

FP32 Medium 510 Solve basic algebraic equations.
BF16 Low 15 Simple arithmetic tasks.

FP16 Medium 510 Evaluate polynomial expressions.
INT8 High >10 Complex geometry problems.

Table 6.3: Mathematical benchmarks in the suite

Code Generation Benchmarks

The ability to generate, complete, or repair code is another critical capability
for modern models. The benchmark suite includes:

HumanEval A widely-used benchmark for function completion, where
models are given natural language docstrings and asked to generate correct
implementations in Python.

MBPP (Mostly Basic Python Programming) A benchmark focused on
simpler programming tasks, ideal for evaluating fundamental code generation
skills such as loop construction, string processing, and arithmetic.

Codeforces-like problems A custom set of programming challenges drawn
from competitive programming contests. These problems are more algorith-
mic, requiring logical thinking, recursion, and dynamic programming.

Benchmark  Difficulty  Steps Required =~ Example Task

HumanEval Medium 25 Complete a function given a description.
MBPP Easy 13 Write short Python functions from descriptions.
Codeforces High >5 Solve competitive programming problems.

Table 6.4: Programming benchmarks in the suite
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General Knowledge and Open-Domain QA Benchmarks

General knowledge is a core dimension of language model competence. The
benchmark suite includes:

TriviaQA A large-scale question answering benchmark focused on factoid
questions spanning history, science, culture, and more. Answers tend to be
single facts.

NaturalQuestions This benchmark reflects real user queries submitted
to search engines, capturing ambiguities, multi-step reasoning, and factual
lookup in realistic contexts.

OpenBookQA A science knowledge benchmark that requires reasoning
with a small open book of science facts, combining knowledge retrieval with
logical deduction.

Benchmark Question Source Knowledge Domain
TriviaQA Curated Trivia General Knowledge
NaturalQuestions Search Logs Open-Domain
OpenBookQA Science Facts Science

Table 6.5: General knowledge benchmarks in the suite

Pre-processing and Formatting

Before evaluation, each benchmark undergoes several pre-processing steps to
ensure consistency with the models training tokenizer and input format:

* Tokenization using the same tokenizer applied during training.

* Removal of extraneous formatting, if present (e.g., HTML tags, mark-
down artifacts).

 Standardization into a clear prompt-response format, especially for
multi-step reasoning problems where intermediate steps should be ex-
plicitly shown.

143



CHAPTER 6. EVALUATION AND BENCHMARKING

For example, a GSMS8K question might be formatted as:

Question: John has 12 apples. He gives 4 apples to his friend and buys 7 more
How many apples does John have now?

<think>

Step 1: Start with 12 apples.

Step 2: Subtract 4 apples given away.

Step 3: Add 7 apples bought.

Step 4: Final count = 12 - 4 + 7 = 15 apples.

</think>

Answer: 15

Multi-domain Evaluation and Composite Scoring

Because large models are expected to handle diverse tasks, evaluation does
not focus solely on one benchmark. Instead, scores across different domains
are aggregated into a composite score. A balanced formula might be:

Composite Score = 0.4 x Math Score + 0.4 x Code Score 4 0.2 x QA Score

This ensures no single domain can dominate the final assessment.

Avoiding Contamination and Data Leakage

For reproducibility, the evaluation suite must be completely disjoint from train-
ing data. This is verified by:

* Deduplication removing any benchmark data found in the pre-training
corpus.

¢ URL matching removing web pages directly linked to evaluation exam-
ples.

* Metadata screening removing content labeled as derived from evalua-
tion datasets.

This ensures models are not unfairly advantaged by memorization.

A well-constructed benchmark suite acts as the ultimate proving ground for
large language models. It moves beyond raw statistical fit to measure practical
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performance across key domains such as math, programming, and knowledge
retrieval. To faithfully replicate the evaluation process described in this book,
expert readers must adopt these benchmarks, apply consistent pre-processing,
and track composite scores over time. These practices ensure not only fairness
and transparency, but also meaningful comparison between models trained at
different scales or under different data and architecture choices.

6.3 Leaderboard Comparison and External Vali-
dation

The development of large language models requires more than just internal
evaluation on curated test sets. To establish a models true performance and
ensure its credibility within the broader research community, external valida-
tion through public leaderboards and direct comparisons with state-of-the-art
models is essential. External benchmarking offers a common ground, where
models trained by different teams under varying conditions are tested under
the same protocols, using identical datasets and metrics. This ensures trans-
parency, reproducibility, and fair assessment of progress. This section ex-
plains the purpose, methodology, and best practices for external validation,
with a focus on how language model developers position their work on global
leaderboards.

Why External Validation Matters. While internal test sets provide valuable
diagnostic feedback during training, they are inherently limited by the data
selection process, potential biases, and differences in task design between
different research teams. External validation addresses these limitations in
several ways:

» Standardized Test Sets: Public leaderboards use pre-defined, widely
agreed-upon test sets, ensuring all models are evaluated on identical
data.

* Cross-Team Comparability: Results from different teams are pre-
sented side-by-side, enabling direct comparisons under consistent con-

ditions.

* Transparency and Reproducibility: External benchmarks allow third
parties to re-run the same tests, ensuring published results are verifiable.
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Without external benchmarking, model performance claims lack credibility,
particularly in highly competitive domains like reasoning and code generation.

Selection of Public Leaderboards. Several leaderboards have become au-
thoritative reference points for evaluating language models. For LLMs, the
following are most relevant:

Open LLM Leaderboard: The Open LLM Leaderboard tracks the perfor-
mance of publicly available models across tasks including general language
understanding, reasoning, math, and code generation. It is particularly useful
for open-source models aiming to establish their standing against both propri-
etary systems and peer open-source projects.

HELM (Holistic Evaluation of Language Models): HELM provides a struc-
tured framework for evaluating models across a broader set of dimensions,
including robustness, fairness, and bias, in addition to core reasoning and
generation capabilities. This broader focus ensures that performance claims
account for potential ethical and safety concerns.

BigCode Leaderboard: Specifically designed for evaluating code generation
models, BigCodes leaderboard tracks performance on widely used program-
ming benchmarks such as HumanEval and MBPP. For models trained to gen-
erate or complete code, this leaderboard provides the most relevant external
validation.

Leaderboard Primary Focus Common Benchmarks Used

Open LLM General LLMs GSMS8K, MMLU, HumanEval

HELM Holistic Capabilities TriviaQA, SQuAD, Truthful QA
BigCode Code Generation HumanEval, MBPP

Table 6.6: Relevant leaderboards for external LLM validation

External Comparison Metrics. The metrics used for external comparison
largely overlap with internal evaluation metrics, but they are applied within
stricter protocols to ensure fair comparisons. The most important metrics in-
clude:

GSMS8K Accuracy: GSMS8K (Grade School Math 8K) measures the propor-
tion of math problems the model solves correctly, with a focus on stepwise
reasoning. This metric captures logical reasoning rather than just language
fluency.

Pass@k: Pass@k is used for code generation, measuring how often the model
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produces a correct solution within its top-k attempts. Both HumanEval and
MBPP rely heavily on pass@k.

MMLU (Massive Multitask Language Understanding): MMLU aggre-
gates performance across 57 distinct subjects, including history, law, biology,
and mathematics. It serves as a proxy for broad domain knowledge and rea-
soning capabilities.

Perplexity (Optional in External Validation): Although perplexity is cru-
cial internally, it is less emphasized in public leaderboards, as it measures
fluency rather than task-specific competence. Nonetheless, some evaluations
(especially language modeling challenges) may report perplexity for complete-
ness.

Models Used for Comparison. To make external validation meaningful,
models must be compared against relevant baselines. The key comparative
groups are:

1. Proprietary Leaders — GPT-4, Claude, Gemini, which set upper
bounds for performance.

2. Leading Open-Source Models — LLaMA 2, Mistral, StarCoder, rep-
resenting the best of what can be achieved under open-source condi-
tions.

3. Earlier Generations — Previous versions of the same model, to docu-
ment internal progress.

Model Type Availability

GPT-4 Proprietary Closed-source
LLaMA 2 Open-source Public weights
Mistral Open-source Public weights

StarCoder ~ Open-source (Code focus) ~ Public weights

Table 6.7: Model baselines for external comparison

Ensuring Fair Comparisons. For external validation to be credible, strict
procedures must be followed:

¢ All models must be evaluated on the same test sets.

* Identical prompt templates should be used across models.
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» Sampling strategies (temperature, top-p, etc.) must be standardized.

* Any post-processing (e.g., normalizing answers for math problems)
should be applied equally to all models.

For example, a typical evaluation pipeline for GSM8K might look like:

# Standard prompt

Q: John has 12 apples. He gives 4 to his friend and buys 7 more. How many apples
does John have now?

A:

# Model inference (with identical sampling across all models)
output = model.generate(prompt, temperature=0.7, top_p=0.95)

# Post-processing
extracted_answer = extract_final_number (output)

Reporting External Validation Results. Transparency is essential when pub-
lishing external validation results. Best practices include:

* Clear disclosure of pre-training data sources (especially if overlaps
with benchmarks exist).

» Explicit documentation of training compute budget and model size.

* Clear separation of results obtained via zero-shot prompting versus
those involving fine-tuning on related data.

An ideal leaderboard submission might resemble:

Model: MyLLM-65B

Pre-training Data: 3T tokens (filtered Common Crawl, books, math, code)
Compute: 2.5 million GPU hours (A100-80GB)

Prompting Method: Standard GSM8K prompt (no task-specific tuning)

GSM8K Accuracy: 85.2%

Why External Validation Benefits the Broader Community. External val-
idation benefits not only the models developers but also the broader research
and user communities:

* Builds trust in published results.

¢ Encourages fair competition by forcing all participants to play by the
same rules.
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 Provides downstream users (researchers, developers) with reliable data
to select the best models for their needs.

* Allows the entire field to track progress over time through consistent
historical comparisons.

No large language model can claim to be state-of-the-art without robust ex-
ternal validation. Public leaderboards, applied under consistent and transpar-
ent evaluation conditions, are the only reliable way to benchmark progress
against both historical models and current competitors. Experts seeking to
replicate the processes described in this book should prioritize external bench-
marking not merely as a reporting requirement, but as an essential scientific
practice that reinforces credibility, transparency, and continuous progress in
large-scale Al research.

6.4 Specialized Reasoning Tests

Evaluation of large language models has evolved significantly over the past
several years, driven by the growing realization that pure fluency and factual
recall metrics are insufficient to capture deeper reasoning capabilities. While
language models have become increasingly capable of generating fluent and
factually correct text, true reasoning abilityunderstanding, planning, and logi-
cally deriving solutions to complex problemsremains a much harder challenge.
This section explores the specialized reasoning tests used to assess these abili-
ties, focusing on mathematical reasoning, stepwise logic, and structured multi-
step problem solving. These tests form a critical component of the evaluation
process for models designed to excel at analytical thinking, problem decom-
position, and structured inference.

Why Reasoning Evaluation is Distinct.

Reasoning is fundamentally different from tasks like language modeling or
factual recall. Language modeling metrics such as perplexity measure a mod-
els ability to predict the next token in fluent text, while factual QA benchmarks
assess the retrieval and regurgitation of specific knowledge. In contrast, rea-
soning evaluation focuses on the process by which the model derives conclu-
sions. This includes:

* Breaking down complex problems into solvable steps.
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* Maintaining logical consistency across steps.
* Detecting and correcting errors mid-process.

* Producing verifiable chains of reasoning, rather than just final answers.

These requirements call for specialized benchmarks that explicitly test reason-
ing steps—not just outcomes—and demand evaluation procedures capable of
capturing intermediate reasoning quality.

Benchmarks for Evaluating Reasoning.

To measure reasoning performance effectively, the evaluation suite must in-
clude benchmarks explicitly designed for multi-step logic and mathematical
reasoning. Three core benchmarks serve this purpose:

GSMBSK. This dataset consists of grade-school math word problems, typically
solvable within 2 to 4 reasoning steps. It captures fundamental arithmetic
reasoning, making it a useful probe for baseline reasoning ability. Problems
resemble:

John has 12 apples. He gives 4 apples to his friend and buys 7
more. How many apples does John have now?

MATHS00. This more advanced benchmark contains problems from math
competitions, often requiring abstract algebra, geometry, and combinatorial
reasoning. Solutions can span up to 10 reasoning steps and frequently involve
symbolic manipulation.

AIME. Sourced from the American Invitational Mathematics Examination,
this benchmark presents some of the most challenging problems. These re-
quire creative insight, multi-step reasoning, and often a combination of alge-
braic transformation, logical deduction, and case analysis.

Benchmark Average Steps Difficulty Level
GSM8K 24 steps Easy
MATHS00 5-10 steps Intermediate
AIME 10+ steps Advanced

Table 6.8: Summary of mathematical reasoning benchmarks
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Structured Reasoning Output.

Unlike factual QA, where a single word or phrase answer suffices, reasoning
problems require complete reasoning chains. To enable reliable evaluation,
models are often required to produce structured reasoning outputs, for exam-
ple:

<think>

Step 1: John starts with 12 apples.
Step 2: John gives away 4 apples.

Step 3: John buys 7 more apples.

Step 4: Total = 12 - 4 + 7 = 15 apples.
</think>

Answer: 15

This format allows evaluators to check the process, not just the answer, en-
abling partial credit if some steps are correct even if the final result is wrong.

Stepwise Accuracy as a Core Metric.

In reasoning evaluation, a models accuracy can be decomposed into:

¢ Final Answer Correctness: Whether the last answer is correct.

» Stepwise Accuracy: Proportion of intermediate reasoning steps that
match ground-truth solutions.

Stepwise accuracy offers diagnostic insight—allowing researchers to pinpoint
whether failures stem from early misunderstanding, mid-process arithmetic
errors, or final step misjudgments.
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Figure 6.3: Stepwise reasoning accuracy across benchmarks

Process Supervision and Reasoning Alignment.

Reasoning-focused models are increasingly trained with process supervision,
where training data explicitly includes stepwise reasoning traces rather than
just final answers. This improves:

* Logical coherence across steps.
* Adherence to correct reasoning formats.

¢ Error detection, by allowing the model to spot inconsistencies as it gen-
erates.

Example training instance:

Q: Alice sells 3 boxes of apples with 10 apples each. How many apples did she sell
?

A:

<think>

Step 1: Each box contains 10 apples.

Step 2: There are 3 boxes.

Step 3: Total apples = 3 * 10 = 30 apples.
</think>

A: 30
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This explicit trace teaches the model to always explain itself.

Reflection and Self-Verification.

Another innovation in reasoning evaluation is the use of reflection prompts.
After producing an initial reasoning chain, the model is asked to review its
own work and identify potential mistakes. This self-verification step helps:

* Catch arithmetic slip-ups.
* Identify skipped logical steps.

» Reinforce careful checking as a core skill.

Example reflection prompt:

Please review the following reasoning. Highlight any logical, arithmetic, or
factual errors:

<think>

Step 1:

Step 2:

</think>

Combining Process and Answer Evaluation.

The final evaluation combines:

Total Reasoning Score = 0.6 X Final Answer Correctness + 0.4 X Stepwise Accuracy

This formula rewards both getting the right answer and reasoning correctly to
reach it.

Benchmark Final Answer Accuracy Stepwise Accuracy
GSMSK 85% 90%
MATHS500 63% 72%
AIME 47% 60%

Table 6.9: Combined reasoning performance across benchmarks

Reasoning Trends Across Training Stages.

Reasoning ability does not emerge uniformly during training. Early stages op-
timize fluency and factual recall, while reasoning often improves more sharply
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during late-stage fine-tuning, particularly when specialized math, logic, and
code datasets are introduced.
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Figure 6.4: Reasoning score over training stages

Specialized reasoning tests provide a far richer and more meaningful signal
than traditional fluency metrics when evaluating models intended for analyt-
ical tasks. By tracking stepwise accuracy, training models to produce struc-
tured reasoning traces, and incorporating reflection-based review, researchers
can ensure that models develop not only factual knowledge, but also the rea-
soning skills necessary to apply that knowledge correctly.
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Chapter 7

DeepSeek Training
Infrastructure and Essential
Tools

DeepSeek has developed a robust, scalable infrastructure that enables the train-
ing of some of the world’s largest Al models. This chapter delves into the
essential tools that form the backbone of DeepSeek’s training pipeline. By
integrating specialized components for expert-parallel communication, bidi-
rectional pipeline parallelism, distributed data access, and optimized attention
computations, DeepSeek achieves unprecedented levels of speed, scalability,
and efficiency. In the sections that follow, we explore these tools—DeepEP,
DualPipe, 3FS, and FlashMLA—in detail, illustrating their roles and inte-
gration within a PyTorch-based training workflow. This discussion aims to
provide both the technical insights and practical guidance necessary for re-
searchers and engineers to harness the full potential of large-scale Al model
training.
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7.1 DeepEP: Expert-Parallel Communication Li-
brary

DeepEP is a custom communication library tailored for Mixture-of-Experts
(MoE) models, where specialized sub-networksknown as expertsare spread
across multiple GPUs or nodes. In these architectures, a gating network as-
signs each input token to one or more experts for parallel processing. This
distribution, however, demands efficient, all-to-all communication: tokens
must be quickly sent to the appropriate experts and their outputs gathered back
seamlessly. DeepEP addresses this challenge by providing optimized, high-
throughput GPU kernels that manage both the dispatch and the combination
of tokens with minimal latency.

Key Features and Practical Benefits

¢ Optimized Dispatch and Combine Kernels:
DeepEP implements dedicated CUDA kernels that handle two critical
operations:

— Dispatch: Routes input tokens to the designated experts across
GPUs.

— Combine: Collects and reassembles the processed outputs from
the experts into the original token order.

These operations are optimized for both intra-node transfers (using
NVLink) and inter-node transfers (leveraging RDMA), ensuring that
communication overhead remains very low even in large-scale setups.

* Low-Precision Data Transfer:
DeepEP supports low-precision data formats such as FP8 and BF16.
This capability reduces the volume of data transferred between devices
without compromising model accuracy, thereby increasing the effective
throughput of the system.

¢ Overlapping Communication with Computation:
By using asynchronous data transfers and managing dependencies
through CUDA events, DeepEP allows communication to occur simul-
taneously with local computation. This overlap means that while tokens
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are being sent or received, the GPU can continue with other computa-
tions, maximizing hardware utilization.

¢ Inference Optimization:
For applications like autoregressive generation where tokens are pro-
cessed one-by-one, DeepEP offers low-latency RDMA kernels. These
optimizations reduce the delay in streaming tokens between experts,
leading to faster response times in production environments.

A Practical Workflow for Integrating DeepEP in a PyTorch
MOokE Pipeline

To illustrate the practical integration of DeepEP, consider the following step-
by-step workflow that shows how to embed it into a PyTorch-based training
loop:

1. Distributed Setup Before leveraging DeepEP, initialize the distributed
environment so that each GPU (or process) is aware of its role. For example:

import torch.distributed as dist
dist.init_process_group(backend='nccl', init_method='env://')
world_size = dist.get_world_size()

rank = dist.get_rank()

In this setup, each GPU is responsible for processing a subset of the experts.

2. Token Routing and Dispatch After the gating network assigns tokens
to experts (for example, using a top-k selection), use DeepEP to compute a
dispatch layout. This layout determines how many tokens need to be sent
to each expert and to which GPU. The following code snippet shows how to
initialize DeepEPs buffer and perform the dispatch:

from deep_ep import Buffer, EventOverlap
_buffer = Buffer() % Initialize the global buffer

# Assume topk_idxz contains the expert assignment for each token,

# and total_number_of_experts is defined.

(num_toks_per_rank, num_toks_per_rdma_rank, num_toks_per_expert,

is_token_in_rank, prev_event) = _buffer.get_dispatch_layout (topk_idx,
total_number_of_experts, async_finish=True)

recv_x, recv_idx, recv_weights, tokens_per_expert, handle, event = _buffer.
dispatch(
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X, topk_idx=topk_idx, topk_weights=topk_weights,
num_tokens_per_rank=num_toks_per_rank,
num_tokens_per_rdma_rank=num_toks_per_rdma_rank,
is_token_in_rank=is_token_in_rank,
num_tokens_per_expert=num_toks_per_expert,
async_finish=True, allocate_on_comm_stream=True)

Here, the dispatch call is non-blocking so that while tokens are being sent to
their target experts, the GPU can begin processing other tasks.

3. Expert Computation and Result Combination Once each GPU re-
ceives its designated tokens, the expert modules perform their forward com-
putation. After processing, DeepEPs combine function gathers these outputs
and reorders them to match the original token sequence:

expert_outputs = []
for expert_id, num_tokens in enumerate(tokens_per_expert):
if num_tokens ==
continue % Skip experts that did not receive any tokens
expert_input = recv_x[recv_idx == expert_id]
expert_output = expert_layers[expert_id] (expert_input)
expert_outputs.append (expert_output)
local_outputs = torch.cat(expert_outputs, dim=0)

combined_x, _, event = _buffer.combine(local_outputs, handle, async_finish=True,
previous_event=event)

The combine operation ensures that every tokens output is placed back in its
original order, ready for the next stage of the network.

4. Backward Pass Integration DeepEP also provides routines for the back-
ward pass, such as dispatch_backward and combine_backward. These
functions manage the reverse flow of gradients across GPUs so that end-to-
end training can proceed without manual intervention.

Practical Tips

* Leverage Asynchronicity: Use the asynchronous options provided by
DeepEP to overlap data transfers with computation. This will help in
reducing idle time on the GPUs.

* Monitor Token Distribution: Ensure that your gating network dis-
tributes tokens evenly among experts to avoid bottlenecks where some
experts are overloaded while others remain idle.
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* Test on a Small Scale First: Before deploying on a large multi-GPU
setup, validate your integration with a small-scale test. This helps catch
configuration issues early and ensures that the communication patterns
work as expected.

By abstracting the low-level details of inter-GPU communication, DeepEP
enables researchers and engineers to focus on developing robust MoE models,
confident that the underlying communication overhead is efficiently managed.

7.2 DualPipe: Bidirectional Pipeline Parallelism

Large-scale models often exceed the memory capacity of a single GPU, so
their layers must be distributed across multiple devices using pipeline paral-
lelism. Traditional pipeline parallelism, however, tends to suffer from idle
”bubbles” where GPUs wait during either the forward or backward pass. Du-
alPipe overcomes these inefficiencies by interleaving forward and backward
computations in a bidirectional manner, ensuring that every stage in the
pipeline remains actively engaged.

Core Concepts and Advantages

¢ Overlapping Forward and Backward Passes:
DualPipe injects micro-batches at both ends of the pipeline. This en-
ables one stage to process the forward pass of one micro-batch while
another stage simultaneously computes the backward pass of a differ-
ent micro-batch. Such interleaving minimizes idle time and maximizes
hardware utilization.

¢ Parameter Duplication for Concurrent Processing:
To facilitate simultaneous forward and backward computations within
the same stage, DualPipe duplicates model parameters. While this ap-
proach increases memory usage, it allows each stage to operate on sep-
arate parameter copies concurrently, significantly boosting throughput.

¢ Enhanced Communication-Compute Overlap:
DualPipe leverages asynchronous data transfers and non-blocking
communication (using primitives like torch.distributed.send
and recv) alongside multiple CUDA streams. This design effectively
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hides the latency of data transfers, ensuring that communication does
not stall computation.

Integrating DualPipe in a PyTorch Distributed Environment

Implementing DualPipe involves partitioning the model into stages, splitting
the training batch into multiple micro-batches, and then scheduling these
micro-batches so that forward and backward passes overlap. Below is a sim-
plified example for a single pipeline stage:

fwd_queue = list(micro_batches) # Micro-batches awaiting forward pass
bwd_queue = [] # Micro-batches awaiting backward pass

outputs = [None] * len(micro_batches)

gradients = [None] * len(micro_batches)

time_step = 0
while fwd_queue or bwd_queue:
# Launch forward pass if a micro-batch is available
if fwd_queue:
mb = fwd_queue.pop(0)
out = stages_fwd[0] (mb) # Ezecute forward pass on stage 0
send_to_next_stage(out, stage=0) # Non-blocking send to the next stage
bwd_queue.append(mb) # Schedule micro-batch for backward pass

# Launch backward pass if gradients are available from the next stage
if gradients_available_from_next_stage(stage=0):
grad_input = recv_grad_from_next_stage(stage=0)
grad_out = stages_bwd[0] .backward(grad_input) # Ezecute backward pass on
stage 0
accumulate_gradients(grad_out, mb) % Accumulate gradients for parameter
updates

time_step += 1

In a full multi-stage pipeline, each stage follows similar logic with careful
coordination of non-blocking communications and parallel CUDA streams.
DeepSeeks open-source DualPipe library provides a complete reference im-
plementation along with profiling tools, allowing fine-tuning of the sched-
ule to achieve near 100% GPU utilizationeven when combining Mixture-of-
Experts with pipeline parallelism.

Practical Considerations

¢ Even Partitioning:
Ensure that your model is split evenly into stages and that the micro-
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batches are balanced. This symmetry is crucial for effective bidirec-
tional scheduling.

¢ Memory Management:
While parameter duplication increases memory requirements, the re-
sulting throughput gains generally outweigh the cost. If memory is a
constraint, consider complementary techniques such as gradient check-
pointing.

* Monitoring and Profiling:
Use the profiling tools provided in the DualPipe library to monitor
pipeline performance. Fine-tuning the scheduling can help identify and
eliminate bottlenecks, ensuring smooth overlap between computation
and communication.

By interleaving forward and backward passes and overlapping communica-
tion with computation, DualPipe significantly reduces idle time in the training
pipeline. This leads to more efficient use of GPU resources and accelerates
the training of extremely large models.

7.3 3FS: Distributed File System for AI Training
Data

For large-scale Al training, fast and reliable access to massive datasets is
as crucial as efficient model computation. 3FS (Fire-Flyer File System) is
DeepSeeks distributed file system that delivers rapid, high-throughput data ac-
cess across thousands of GPUs. By integrating high-speed NVMe SSDs with
RDMA-capable networks, 3FS creates a unified storage solution that scales
effortlessly with increasing data and compute demands.

Architectural Highlights and Practical Benefits

 Disaggregated Storage and Scalability:
3FS aggregates storage from multiple nodes, each equipped with high-
speed NVMe SSDs, to achieve an overall read throughput that scales
with the number of nodes. Data is striped and replicated across servers,
ensuring that even the most demanding training workloads can access
data at speeds comparable to local disk access.
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« RDMA-Optimized Data Transfers:
By leveraging RDMA (Remote Direct Memory Access), 3FS mini-
mizes CPU involvement and reduces latency during data transfers. This
is especially beneficial when handling large checkpoint files or stream-
ing high volumes of training data.

¢ Strong Consistency and POSIX Compliance:
Utilizing chain replication and a stateless metadata service, 3FS guaran-
tees strong consistency across all operations. Its full POSIX-compliant
interface means that standard data-loading tools, such as PyTorchs Dat-
alLoader, work seamlessly without any modifications.

¢ Optimized for Diverse Data Workloads:
Whether dealing with millions of small files or large multi-gigabyte
datasets, 3FS is engineered for efficient random access, global shuffling,
and parallel writes. This versatility makes it an ideal solution for both
streaming training data and managing checkpoint storage.

Integrating 3FS with PyTorch

Integrating 3FS into your training workflow is straightforward, especially
when it is mounted as a standard file system (e.g., at /mnt/3£fs). For example,
using an ImageFolder dataset for ImageNet:

import torchvision.datasets as dsets

import torchvision.transforms as T

from torch.utils.data import DataLloader

from torch.utils.data.distributed import DistributedSampler

data_root = "/mnt/3fs/data/imagenet"
train_set = dsets.ImageFolder (root=f"{data_root}/train", transform=T.ToTensor())

# For distributed training, use a DistributedSampler to ensure each process reads a
unique subset.

sampler = DistributedSampler(train_set, num_replicas=world_size, rank=rank,
shuffle=True)

train_loader = Dataloader(train_set, batch_size=256, sampler=sampler, num_workers
=8)

In this setup, each training node directly accesses data from 3FS over the net-
work. The inherent caching and block-aligned read operations further boost
performance, ensuring that GPUs are continuously fed with data without re-
quiring local copies or pre-sharded datasets.
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Practical Considerations

* Mounting and Configuration:
Ensure that 3FS is correctly mounted on all training nodes (e.g.,
/mnt/3fs). Tuning configuration options like cache size and block
alignment based on workload and network conditions can further
optimize performance.

* Data Organization:
Organize datasets into a hierarchical directory structure to reduce direc-
tory listing overhead and enhance file access performance.

* Monitoring Throughput:
Utilize system tools (e.g., iostat) or dedicated 3FS monitoring utili-
ties to track I/O throughput and ensure that the file system meets your
training demands.

¢ Distributed Sampling:
When  using  distributed training, always employ a
DistributedSampler to ensure each process accesses a
unique subset of data, minimizing redundant transfers and maximizing
efficiency.

By integrating 3FS into your training pipeline, you eliminate common data
access bottlenecks, allowing your GPU clusters to focus on processing and
learning from vast datasets.

7.4 FlashMLA: Efficient Attention Kernel Opti-
mization

Transformer models rely on attention mechanisms to capture complex rela-
tionships in data. However, traditional attention computations require form-
ing large matrices that scale quadratically with sequence length, which can
quickly become a memory and speed bottleneck. FlashMLA is DeepSeeks
specialized attention kernel designed to address these challenges by optimiz-
ing both speed and memory usage through advanced techniques such as tiling,
fusion, and latent compression.
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Innovations and Practical Benefits

¢ Tiled and Fused Computations:
FlashMLA breaks the attention computation into smaller, manageable
tiles rather than materializing the entire attention matrix. This tiling
approach reduces memory consumption and enhances cache locality,
leading to faster execution.

¢ Low-Rank Key-Value Compression:
By compressing the key-value (K'V) cache to roughly 6.7% of its orig-
inal size, FlashMLA allows transformers to support much longer se-
quences without suffering from quadratic memory growth. This latent
attention mechanism shares information across heads or employs low-
dimensional projections, resulting in an approximate 15 reduction in
KV storage.

¢ Paged KV Cache and Precision Optimization:
The kernel organizes keys and values into fixed-size pages, streamlining
memory access and handling variable-length sequences efficiently.
Leveraging NVIDIA Hopper GPUs’ advanced tensor cores with
BF16/FP16 precision, FlashMLA achieves near-peak performanceup
to 580 TFLOPS on H800 GPUswhile maintaining numerical stability.

Integrating FlashMLA into Transformer Models

Integrating FlashMLA into your transformer model involves replacing the
standard multi-head attention module with one that calls the FlashMLA kernel.
The following steps offer a practical guide for using FlashMLA with PyTorch.

1. Installation and Import Ensure FlashMLA is installed in your environ-
ment, and import the necessary functions:

from flash_mla import get_mla_metadata, flash_mla_with_kvcache

2. Custom Attention Module Below is a simplified implementation of an
attention module that uses FlashMLA:

import torch
import torch.nn as nn
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class FlashMLAAttention(nn.Module):
def __init__(self, embed_dim, num_heads):
super () . __init__()
self .num_heads = num_heads
self.head_dim = embed_dim // num_heads
self .W_q = nn.Linear (embed_dim, embed_dim)
self .W_k = nn.Linear (embed_dim, embed_dim)
self .W_v = nn.Linear (embed_dim, embed_dim)
self.W_o = nn.Linear(embed_dim, embed_dim)

def forward(self, x, key_cache=None, cache_seqlens=None):

batch, seq_len, _ = x.size()

# Compute query, key, and value projections
= self.W_q(x).view(batch, seq_len, self.num_heads, self.head_dim)
self.W_k(x).view(batch, seq_len, self.num_heads, self.head_dim)
self.W_v(x).view(batch, seq_len, self.num_heads, self.head_dim)

Q
K
v

# For training, use current K and V as the cache
if key_cache is None:
key_cache = K
val_cache = V
cache_seqlens = torch.IntTensor([seq_len] * batch).to(x.device)
else:
# For inference, append new projections to the exzisting cache
key_cache = torch.cat([key_cache, K], dim=1)
val_cache = torch.cat([V], dim=1)
cache_seqlens += 1

# Generate tiling metadata based on cache sequence lengths
tile_meta, num_splits = get_mla_metadata(cache_seqlens, s_g=self.num_heads,
h_kv=self.num_heads)

# Execute the FlashMLA kernel with causal masking enabled
output, lse = flash_mla_with_kvcache(Q, key_cache, None, cache_seqlens,
self.head_dim, tile_meta, num_splits, causal
=True)
# Reshape and project the output back to the original embedding dimension
out = output.reshape(batch, seq_len, -1)
return self.W_o(out), key_cache, val_cache, cache_seqlens

3. Usage in a Model The custom attention module can now be integrated
into your transformer model. For example:

attn = FlashMLAAttention(embed_dim=1024, num_heads=16) .cuda()

x = torch.randn(32, 128, 1024, device='cuda') # Ezample input: batch of 32,
sequence length 128

out, key_cache, val_cache, cache_seqlens = attn(x)

loss = some_loss_function(out)

loss.backward() # Gradients propagate through the FlashMLA kernel seamlessly

By reducing the memory footprint and accelerating the attention computation,
FlashMLA enables transformer models to handle longer sequences and larger
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batch sizes. This optimization is pivotal for both training and inference, mak-
ing FlashMLA a key component in DeepSeeks approach to scaling state-of-
the-art transformer models.

DeepSeek ’s training infrastructure combines specialized tools that address
key challenges in scaling Al models. DeepEP optimizes MoE communica-
tion, DualPipe eliminates pipeline idle time through bidirectional scheduling,
3FS delivers high-throughput distributed data access, and FlashMLA acceler-
ates attention mechanisms while reducing memory overhead. Together, these
components form an integrated ecosystem that pushes the boundaries of large-
scale model training, allowing researchers and engineers to focus on innova-
tion rather than infrastructure bottlenecks.
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Chapter 8

DeepSeek Model
Architecture and
Optimization Techniques

DeepSeek ’s large language models achieve state-of-the-art performance
through a carefully designed architecture combined with advanced optimiza-
tion techniques. This chapter covers the essential architectural features of
DeepSeek’s models, including the use of Mixture-of-Experts (MoE) layers,
position encoding innovations, and attention scaling. It also highlights op-
timization techniques applied during training, including expert parallelism,
efficient attention, and custom data pipelines. Together, these design and op-
timization strategies enable DeepSeek models to scale efficiently across thou-
sands of GPUs while maintaining competitive accuracy and throughput.

8.1 Mixture-of-Experts (MoE) in DeepSeek Mod-
els

DeepSeek models leverage a sparse Mixture-of-Experts (MoE) architecture
to dramatically scale model capacity without a proportional increase in com-
putation. Instead of using a single, dense feed-forward network in every
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transformer block, MoE replaces it with a collection of specialized expert
sub-networks. For each input token, only a small subset of these experts is
activated, enabling massive overall capacity while keeping the per-token com-
putation manageable.

For example, DeepSeek-V3 contains a total of 671 billion parameters; how-
ever, due to sparse activation, only about 37 billion parameters are active per
token. This design not only reduces the computational cost but also enables
the model to handle a wide variety of tasks by routing tokens to experts best
suited for processing them.

How MoE Works in DeepSeek Models

In an MoE layer, the standard feed-forward network is replaced by multiple ex-
pert sub-networks. A gating network first examines the hidden representation
of each token and produces a score for every expert. By applying a softmax
function over these scores, the gating network converts them into probabili-
ties. DeepSeek commonly employs top-k gating (with k = 2), meaning that
for each token, only the two experts with the highest probabilities are selected.
The output of the MoE layer is then computed as a weighted sum of the outputs
from these selected experts:

y= Z Gi(h) Ei(h),

1€Top-k(h)

where h is the input hidden state, F;(h) is the output of the i-th expert, and
G;(h) is the corresponding gating weight. This approach allows the model
to scale up its capacityby adding more expertswithout increasing the compute
per token linearly.

Expert Specialization and Load Balancing

A major advantage of the MoE architecture is that it promotes expert special-
ization. Over the course of training, different experts tend to learn to handle
specific types of patterns or tasks. For instance, one expert might focus on syn-
tactic structures, while another might specialize in factual recall. The gating
network dynamically routes tokens to the most relevant experts, effectively
ensembling many specialized sub-models.
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However, ensuring a balanced distribution of tokens across experts is crucial.
If a few experts are overused while others are underutilized, it can lead to
training instability and inefficient use of model capacity. DeepSeek addresses
this issue by incorporating a load balancing loss into the training objective.
This auxiliary loss encourages the gating probabilities to be evenly distributed
among experts. One common method is to penalize the variance in expert
utilization, for example by computing the coefficient of variation:

Var(I)

V= Bdean (D)

where I; = Y .. Gi(h) represents the total gating weight for expert 7. Min-
imizing this term helps ensure that each expert receives a roughly equal share
of the tokens. In newer versions like DeepSeek-V3, a refined group-limited
gating mechanism is used to naturally maintain a balanced load without the
need for an explicit auxiliary loss.

A Practical Implementation Example

Below is a simplified PyTorch-like pseudocode that demonstrates the imple-
mentation of a sparse MoE layer with top-k gating (with k& = 2):

import torch
import torch.nn.functional as F

class MOELayer (torch.nn.Module) :
def __init__(self, d_model, num_experts, k=2):
super () .__init__()
self.k = k
self .num_experts = num_experts
# Gating network: produces a score for each ezpert
self.gate = torch.nn.Linear(d_model, num_experts)
# Expert networks: each exzpert is an independent feed-forward network
self.experts = torch.nn.ModuleList ([ExpertFFN(d_model) for in range(
num_experts)])

def forward(self, x):
# x shape: (batch, seq_len, d_model)
batch_size, seq_len, d_model = x.shape
# Compute gating logits for each token
logits = self.gate(x) # shape: (batch, seq_len, num_ezperts)
# Select top-k exzperts for each token
topk_vals, topk_idx = torch.topk(logits, self.k, dim=-1) # shape: (batch,
seq_len, k)
# Create a mask that zeros out non-topk exzperts
mask = torch.full_like(logits, float('-inf'))
mask.scatter_(dim=-1, index=topk_idx, src=topk_vals)
# Apply softmaz to get gating probabilities (only top-k get mon-zero values)
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gates = F.softmax(mask, dim=-1) # shape: (batch, seq_len, num_experts)
# Initialize output tensor
output = torch.zeros(batch_size, seq_len, d_model, device=x.device)
# Dispatch tokens to experts and collect results
for expert_idx, expert in enumerate(self.experts):
# Identify tokens for which this expert is among the top-k
token_mask = (topk_idx == expert_idx).any(dim=-1) # shape: (batch,
seq_len)
if token_mask.any():
expert_in = x[token_mask] # select tokens assigned to this ezpert
expert_out = expert(expert_in) # process tokens via expert network
# Weight expert outputs by the corresponding gating probabilities
output [token_mask] += expert_out * gates[token_mask, expert_idx].
unsqueeze (-1)
return output

In this pseudocode, the gating network computes a score for each expert, and
only the top two experts are activated per token. The tokens output is the
weighted sum of the selected experts outputs. In a production environment,
the dispatch-and-combine operations would be optimized furtheroften using
custom CUDA kernels and parallel communication across devices.

DeepSeek s use of Mixture-of-Experts allows the model to achieve massive
capacity by distributing computation across hundreds of billions of parame-
ters, while keeping the per-token computational cost nearly constant. Through
efficient expert selection, dynamic routing, and load balancing, the MoE ar-
chitecture enables expert specialization and robust performance across diverse
tasks, making training and inference both scalable and cost-effective.

8.2 Advanced Position Encoding Strategies

Handling very long input sequences is a significant challenge for DeepSeek
models, which can support context lengths up to 128K tokens. To address
this, DeepSeek employs advanced position encoding strategies that not only
capture relative positional information effectively but also keep computational
costs manageable. This section details two key innovations: Rotary Position
Embeddings (RoPE) and Sliding Window Attention, which together ensure
long-range coherence without excessive computational overhead.

Rotary Position Embeddings (RoPE)

Rotary Position Embeddings (RoPE) are used to inject high-quality positional
information into the transformers attention mechanism. Instead of adding
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fixed positional embeddings to the input, RoPE applies a position-dependent
rotation to the query and key vectors in each attention head. Specifically, for
each position ¢ and each paired dimension (2, 2i + 1) in the query (or key)
vector, a rotation is applied:

Qr2i ) _ cos(f;) —sin(6;) q,?r;gl
Qt,2i+1 sin(6;)  cos(6;) q;’ggiﬂ ’
where the angle 6, is typically a monotonic function of the position ¢ (for
example, §; = ¢ - w with a base frequency w). This rotation embeds relative

positional information directly into the dot product ¢; - ks, as differences in
rotation angles between positions ¢ and s encode their relative distance.

DeepSeek extends the standard RoPE approach by using a decoupled vari-
ant within its Multi-Head Latent Attention (MLA) framework. In decoupled
RoPE, the positional encoding is applied in a separate latent space or to a
reduced-dimensional sub-projection of the query and key vectors. This ad-
justment helps prevent issues that can arise with very long sequencessuch as
excessive rotation angles that may degrade some dimensionsthereby ensuring
that the positional encoding remains stable up to the 128K token context limit.

Below is an illustrative snippet showing how one might apply RoPE in a Py-
Torch attention module:

def apply_rope(q, k, seq_dim=-2):

# g, k have shape (..., seq_len, head_dim)

seq_len = q.size(seq_dim)

half_dim = q.size(-1) // 2 # assume head_dim is even

pos = torch.arange(seq_len, device=q.device, dtype=torch.float)

# Compute inverse frequencies for each pair of dimensions

inv_freq = 10000%*(-torch.arange(0, half_dim, 2, device=q.device).float()/
half_dim)

# Compute rotation angles: outer product of position indices and inverse
frequencies

angles = torch.einsum('n,d->nd', pos, inv_freq)

# Exzpand angles to cover paired dimensions by repeating each angle twice

cos = torch.cos(angles).repeat_interleave(2, dim=1)

sin = torch.sin(angles).repeat_interleave(2, dim=1)

# Apply rotations: combine cosine and sine components for each pair

q_rot = q * cos.unsqueeze(0) + torch.stack([-q[...,1::2], q[...,::2]], dim=-1).
reshape(q.shape) * sin.unsqueeze(0)
k_rot = k * cos.unsqueeze(0) + torch.stack([-k[...,1::2], k[...,::2]], dim=-1).

reshape (k.shape) * sin.unsqueeze(0)
return q_rot, k_rot

# Example usage inside an attention forward pass:

q, k, v = self.Wq(x), self.Wk(x), self.Wv(x) # linear projections
q = q.view(batch, seq_len, n_heads, head_dim).transpose(1,2)

k = k.view(batch, seq_len, n_heads, head_dim).transpose(1,2)
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v = v.view(batch, seq_len, n_heads, head_dim).transpose(1,2)
q, k = apply_rope(q, k, seq_dim=2)
attn_scores = torch.matmul(q, k.transpose(-1, -2)) * (1.0 / math.sqrt(head_dim))

In practice, DeepSeeks decoupled RoPE may apply these rotations in a latent
subspace or reset the rotation periodically, ensuring robust performance over
very long contexts.

Sliding Window Attention for Long Contexts

While RoPE efficiently encodes positional information, the quadratic cost of
full self-attention remains a challenge when handling very long sequences.
To address this, DeepSeek employs a sliding window attention mechanism.
Instead of allowing each token to attend to all previous tokens, sliding window
attention restricts the receptive field to a fixed-size window W (e.g., 2048
tokens). This means that each token attends only to tokens within the range
[t — W, ], drastically reducing computational requirements from quadratic to
linear with respect to sequence length.

The sliding window attention works as follows:

* Local Attention: Each token attends to a fixed number of preceding to-
kens. This ensures that the most recent contextoften the most relevantis
prioritized.

* Sequential Processing: As the sequence is processed, the attention
window slides forward, ensuring continuity of context across segments.

e Causal Constraint: For autoregressive models, the sliding window
naturally incorporates causality by preventing tokens from attending to
future positions.

An example implementation of a sliding window attention mask in PyTorch
might look like this:

L = seq_len
W = window_size # e.g., 2048
mask = torch.full((L, L), float('-inf')) # initialize all positions as masked
for t in range(L):
start = max(0, t - W)
mask[t, start:t+1] = O # allow attention for tokens within the window
# Use the mask as an additive term in softmaz attention
attn_weights = torch.softmax(attn_scores + mask, dim=-1)
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This approach limits each tokens attention to a manageable number of posi-
tions, ensuring that the overall attention complexity grows linearly with se-
quence length (for a fixed W). Information from tokens outside the window
can still be propagated through multiple layers, effectively stitching together
long-range dependencies over the depth of the model.

Synergy of RoPE and Sliding Window Attention

By combining RoPE with sliding window attention, DeepSeek achieves a bal-
ance between high-quality positional encoding and computational efficiency.
ROPE provides detailed relative position information within each window,
while the sliding window mechanism keeps the attention computation feasible
even for extremely long contexts. Together, these techniques enable DeepSeek
models to process inputs as long as entire books or multi-document contexts,
preserving long-range coherence without incurring prohibitive memory or
time costs.

Advanced position encoding strategies in DeepSeekincluding decoupled Ro-
tary Position Embeddings and sliding window attentionallow the model to
maintain context awareness and long-range coherence efficiently. These inno-
vations ensure that, even at context lengths up to 128K tokens, the model can
operate effectively, making it well-suited for processing very long documents
or conversations. The techniques are integrated into the model architecture in
a way that is largely transparent to the user, allowing practitioners to simply
specify longer sequences and trust that the underlying mechanisms will handle
positional information robustly.

8.3 Memory-Efficient Attention Optimizations

As models grow larger and context lengths extend into the tens or hundreds of
thousands of tokens, the memory and compute cost of self-attention become
critical bottlenecks. DeepSeek addresses these challenges by incorporating a
suite of memory-eflicient attention optimizations. In particular, it leverages
three complementary techniques:

1. Flash Attention an IO-aware algorithm that reorders attention compu-
tations into manageable tiles,
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2. Grouped-Query Attention (GQA) a method that reduces redundant
key/value storage across heads, and

3. Low-Rank Key/Value Cache Compression a custom technique that
compresses long-term context into a compact representation.

These innovations not only reduce the memory footprint but also accelerate
both training and inference, making it feasible to work with models that sup-
port 128K context and billions of parameters.

Flash Attention

Flash Attention is designed to overcome the quadratic memory requirements
of standard attention. In conventional self-attention, the computation of soft-
max weights involves materializing a full L x L attention matrix for a sequence
of length L, which is both memory intensive and slow due to repeated high-
bandwidth memory (HBM) accesses. Flash Attention tackles this by:

* Tiling the Computation: The sequence is divided into smaller blocks
that fit in the GPU’s on-chip SRAM.

¢ On-Chip Computation: Within each tile, the softmax and weighted
sum are computed without ever materializing the full attention matrix.

This careful reordering of operations reduces memory usage from quadratic to
linear in L and significantly cuts down on data transfers between GPU mem-
ory and on-chip caches. Modern frameworks (e.g., PyTorch 2.0) expose this
functionality through calls such as:

import torch.nn.functional as F

# q, k, v: shape (batch, heads, seq_len, head_dim)

# This call utilizes Flash Attention kernels on supported hardware.

attn_output = F.scaled_dot_product_attention(q, k, v, attn_mask=None, is_causal=
True)

Empirical benchmarks show that Flash Attention can reduce memory usage
by up to 10 at longer sequence lengths (e.g., 4K8K tokens) and can speed up
training by keeping data on-chip.

174




8.3. MEMORY-EFFICIENT ATTENTION OPTIMIZATIONS

Grouped-Query Attention (GQA)

Grouped-Query Attention (GQA) is an intermediate approach between stan-
dard multi-head attention and multi-query attention (MQA). In MQA, all
query heads share a single key and value, drastically reducing memory re-
quirements but potentially harming model expressiveness. GQA generalizes
this idea by dividing the attention heads into G groups, where 1 < G < H
(with H being the total number of heads). Each group uses its own key and
value projections shared among a subset of query heads. This approach offers
the following benefits:

¢ Memory Savings: The size of the key/value cache is reduced roughly
by a factor of GG. For instance, if G = 8 in a model with 64 attention
heads, the KV cache storage is reduced by 8.

* Quality Preservation: Unlike full MQA (where G = 1), GQA pre-
serves more diversity across heads by allowing each group to specialize.

A sketch of a GQA implementation in PyTorch might look like:

H = num_heads
G = kv_groups # number of key/value groups (e.g., 8)
head_dim = d_model // H

# Linear projections: { with shape (B, L, H, head_dim); K and V with shape (B, L, G,
head_dim)

Wq(x).view(B, L, H, head_dim)

Wk(x).view(B, L, G, head_dim)

Wv(x).view(B, L, G, head_dim)

Gl
k

v

# Ezpand keys and values to have one per head by repeating each group

expand_factor = H // G

k_expanded = k.repeat_interleave(expand_factor, dim=2) % shape: (B, L, H, head_dim
)

v_expanded = v.repeat_interleave(expand_factor, dim=2) % shape: (B, L, H, head_dim

)

# Proceed with standard multi-head attention using q, k_ezpanded, and v_expanded.
scores = torch.einsum('B L hd, BLhd->BhLL', q, k_expanded) / math.sqrt(
head_dim)

This approach reduces the memory footprint of the key/value cache while re-
taining most of the benefits of full multi-head attention.
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Low-Rank Key/Value Cache Compression

For extremely long contexts, the key and value caches can become pro-
hibitively large. DeepSeek introduces a custom low-rank compression tech-
nique to address this issue. The key insight is that the key K and value V'
matrices often contain redundant information and lie in a lower-dimensional
subspace. By applying a low-rank factorization, the model can represent these
matrices in a compressed form without significantly degrading the attention
outputs.

In practice, learned projection matrices Px € R%*" and Py, € R4 <" (with
r < dy) are used to compress K and V:

K/:KPK, VIZVPV7

where K € RE*n and V' € REX4r, The attention computation then pro-
ceeds in the compressed space:

scores = Q(K’)" and context = softmax(scores) V",

followed by a reconstruction step (if needed) to map the context back to the
original dimension:
context_full = context PJ .

A simple illustration in PyTorch pseudocode is as follows:

d = 128 # original head dimension
r = 64 # compressed dimension

# Learned projection matrices
P_K = torch.nn.Parameter(torch.randn(d, r))
P_V = torch.nn.Parameter(torch.randn(d, r))

# During the forward pass:
K = compute_keys(x) # shape: (batch, seq_len, d)
V = compute_values(x) # shape: (batch, seq_len, d)

# Compress K and V to lower dimensions
K_comp = K @ P_K # shape: (batch, seq_len, r)
V_comp = V @ P_V # shape: (batch, seq_len, )

# Compute attention using compressed keys and values

scores = torch.matmul(Q, K_comp.transpose(-1, -2)) / math.sqrt(r)
attn_weights = torch.softmax(scores, dim=-1)

context_comp = torch.matmul(attn_weights, V_comp)

# Optionally, reconstruct context back to original dimension
context = context_comp @ P_V.t() # shape: (batch, seq_len, d)
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By training the model end-to-end with these low-rank projections, DeepSeek
ensures that the compressed representations retain the essential information
needed for accurate attention, thereby reducing memory usage and speeding
up data transfers.

Together, Flash Attention, Grouped-Query Attention, and low-rank KV cache
compression form a powerful trio that makes full-attention on very long se-
quences feasible. Flash Attention optimizes the computation to run in on-
chip memory, GQA reduces the redundancy in key/value storage across atten-
tion heads, and low-rank compression further shrinks the memory footprint
of long-term context. These techniques are largely orthogonal, meaning they
can be combined to achieve multiplicative improvements in efficiencyan ap-
proach that is central to DeepSeek’s ability to scale to 128K token contexts
while maintaining competitive training and inference speeds.

8.4 Pipeline and Expert Parallelism in DeepSeek
Models

Scaling DeepSeek models to teraflop compute regimesusing hundreds or even
thousands of GPUsrequires sophisticated parallelism strategies. To meet this
challenge, DeepSeek employs a combination of pipeline parallelism and ex-
pert parallelism that work in concert to distribute computation effectively
across devices. In recent Open-Source Week releases, the DeepSeek team
introduced DualPipe, a bidirectional pipeline parallelism algorithm, along
with DeepEP, an expert-parallel communication library. Together, these ap-
proaches ensure that enormous Mixture-of-Experts (MoE) models, composed
of many layers and a large number of experts, can be trained efficiently across
large GPU clusters.

Pipeline Parallelism (DualPipe)

Pipeline parallelism splits the neural network into sequential stages, with each
stage assigned to a different device (or group of devices). During training, a
large mini-batch is divided into multiple micro-batches that flow through the
pipeline in a staggered fashion. In a naive pipeline, once a micro-batch com-
pletes the forward pass in one stage, that stage might remain idle while waiting
for the subsequent stage to finish its computation. DualPipe overcomes this
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limitation by overlapping forward and backward passes.

* Bidirectional Scheduling: DualPipe injects micro-batches at both the
beginning and the end of the pipeline. This means that while the forward
pass for one micro-batch is propagating from the first to the last stage,
the backward pass for a previous micro-batch can simultaneously flow
from the last stage back to the first.

* Minimized Idle Time: Through careful scheduling and asynchronous
communication, DualPipe ensures that each pipeline stage is almost al-
ways busyeither computing a forward chunk or processing a backward
gradientthereby dramatically improving throughput.

For example, consider a pipeline split into 4 stages across 4 GPU nodes. With
DualPipe, stage 1 might process the forward pass of micro-batch ¢ + 1 while
stage 2 processes the forward pass of micro-batch ¢ and stage 3 is already
handling the backward pass of micro-batch 7. Although the scheduling details
can be complex, frameworks like PyTorchs pipeline module or DeepSpeeds
pipeline engine help automate this process. A simple two-stage example using
PyTorchs experimental pipeline module might look like:

import torch.distributed.pipeline.sync as pipelining

# Assume the model has been split into two parts, each assigned to a different GPU.
model_stagel = Stagel().to('cuda:0')
model_stage2 = Stage2().to('cuda:1')

# Create a pipeline module that splits the input into 8 micro-batches (chunks)
pipe = pipelining.PipelineModule(

layers=[model_stagel, model_stage2],

devices=['cuda:0', 'cuda:1'],

chunks=8

DualPipe extends these ideas by further overlapping backward passes, reduc-
ing idle time and boosting hardware utilization even when the number of
pipeline stages increases.

Expert Parallelism (DeepEP)

In DeepSeeks MoE architecture, only a small subset of experts is active for
each token. Rather than placing all experts on a single device, expert paral-
lelism distributes them across multiple GPUs. For instance, if an MoE layer
contains 64 experts and 8 GPUs are available, each GPU might host 8 experts.
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This distribution introduces an all-to-all communication pattern:

* During the forward pass, each GPU must send token representations to
the GPUs hosting the corresponding experts.

» After processing, the outputs from the experts are gathered and re-
ordered to match the original token order.

DeepEP is the specialized library that handles this complex communication
efficiently. It provides custom GPU kernels for dispatching tokens to experts
(the scatter phase) and for gathering their outputs back (the gather phase),
making full use of high-speed interconnects such as NVLink (for intra-node
transfers) and RDMA (for inter-node transfers). DeepEP even supports low-
precision transfers (e.g., FP8) to further reduce communication overhead.

A simplified example of setting up expert parallelism in PyTorch might involve
creating distributed process groups. Suppose the total world size is 64 and the
expert parallel size is set to 8; then, the experts for a given MoE layer can be
grouped into 8 shards, with each group handling a portion of the experts:

import torch.distributed as dist

world_size = dist.get_world_size()

EP_size = 8 # Number of GPUs per exzpert group
rank = dist.get_rank()

# Determine group index for expert parallelism

expert_group_idx = rank // EP_size

# Create a process group for the current expert parallel shard

expert_group = dist.new_group(ranks=1list(range(expert_group_idx * EP_size,
(expert_group_idx + 1) * EP_size)))

Within each expert group, an all-to-all operation (using, for example,
dist.all_to_all) is used to shuffle token representations to the
appropriate GPUs, and later to gather the processed outputs. This expert
parallelism enables the model to scale the number of experts without
exceeding the memory limits of individual GPUs.

Synergy of Pipeline and Expert Parallelism

By combining pipeline parallelism and expert parallelism, DeepSeek achieves
multi-dimensional parallelism:

* Pipeline Parallelism ensures that the layers of the model are distributed
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and that each GPU remains busy through overlapping forward and back-
ward passes.

* Expert Parallelism distributes the numerous experts in MoE layers
across GPUs, reducing per-device memory load and ensuring efficient
all-to-all communication.

For instance, a DeepSeek-V3 training run might configure:

8 pipeline stages,
* 64 experts per MoE layer distributed across expert groups, and

* Additional data parallelism for handling large batches.

These strategies are orchestrated using frameworks such as DeepSpeed,
FairScale, or custom libraries like DeepEP and DualPipe, which together
maximize GPU utilization and enable training of models with hundreds of
billions of parameters in an efficient, cost-effective manner.

In summary, DeepSeeks training infrastructure leverages advanced pipeline
parallelism (DualPipe) to ensure continuous GPU utilization and expert paral-
lelism (via DeepEP) to distribute the load of MoE layers across many devices.
This multi-dimensional parallelism not only enables scaling to thousands of
GPUs but also dramatically reduces training time and cost, making it possible
to train massive models such as DeepSeek-V3 (with 671 billion parameters)
efficiently.

8.5 Data Preprocessing and Augmentation
Pipelines

Training a model as large as DeepSeek requires a highly optimized data
pipeline that can efficiently feed trillions of tokens to the model. DeepSeeks
data preprocessing innovations focus on two key areas: dynamic document
splitting and on-the-fly tokenization. Together, these techniques ensure that
the model receives long, coherent contexts and that the input pipeline never
becomes a bottleneck during large-scale training.
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Dynamic Document Splitting

Traditional large language model (LLM) training pipelines often use a sim-
ple concatenate and chunk approach. In this method, all documents in the
corpus are concatenated into one long stream and then split into fixed-length
sequences (e.g., 2048 tokens). While straightforward, this method tends to
break natural document boundaries, leading to abrupt transitions and loss of
context at the chunk boundaries. Such disruptions can negatively affect the
models ability to capture long-range dependencies and may increase factual
errors or hallucinations.

DeepSeek addresses these issues with dynamic document splitting, an intel-
ligent chunking strategy that adapts to the natural structure of the text. Key
aspects include:

¢ Coherent Chunking: Rather than always starting new sequences at
fixed offsets, the dynamic splitter randomizes split points or uses slid-
ing windows. This approach helps preserve the natural flow of text,
ensuring that the model occasionally sees complete document endings
or smooth transitions between related texts.

* Best-Fit Packing: When documents are shorter than the maximum se-
quence length, the pipeline packs multiple documents into a single se-
quence. This minimizes wasted space and reduces the number of arbi-
trary truncations. Best-fit packing algorithms approximate a solution to
the bin-packing problem, ensuring that short documents are combined
in a way that maintains contextual integrity.

* Dynamic Shuffling Across Epochs: The splitting strategy can vary
slightly with each training epoch. For example, one epoch might split a
long document at one point, while the next epoch uses a different split
position. This variability exposes the model to multiple continuous seg-
ments from the same document, further enhancing its ability to model
long-range dependencies.

A simplified pseudocode illustration for dynamic document splitting is shown
below:

import random

max_len = 2048
sequences = []
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for doc in documents:
tokens = tokenizer.encode(doc) # on-the-fly tokenization is applied later
if len(tokens) <= max_len:
sequences . append (tokens)

else:
# For long documents, split into chunks with optional overlap
start = 0

while start < len(tokens):
end = min(len(tokens), start + max_len)
chunk = tokens[start:end]
sequences . append (chunk)
# Optionally add overlap or randomize the next starting point
start += max_len

# Pack shorter documents together to minimize padding waste
packed_sequences = []
current_seq = []
for tokens in sequences:
if len(current_seq) + len(tokens) <= max_len:
current_seq.extend(tokens)
else:
packed_sequences.append (current_seq)
current_seq = tokens.copy ()
if current_seq:
packed_sequences.append (current_seq)

This approach helps maintain contextual integrity by ensuring that each train-
ing sample is as contiguous as possible, enabling the model to learn long-range
dependencies more effectively.

On-the-Fly Tokenization

Rather than pre-tokenizing and storing massive tokenized datasetswhich can
be storage-intensive and inflexibleDeepSeek employs on-the-fly tokeniza-
tion. Using a lightweight tokenizer built on the Rust-based HuggingFace
tokenizers library, raw text is converted into tokens dynamically during
training. This offers several advantages:

« Storage Efficiency: There is no need to maintain a separate, large-scale
tokenized dataset, reducing storage requirements.

¢ Flexibility and Dynamic Processing: On-the-fly tokenization allows
for dynamic document splitting and adaptive preprocessing, so that
changes to the vocabulary or filtering criteria can be applied without
reprocessing the entire corpus.

* Parallelism and Throughput: Tokenization can be parallelized across
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multiple CPU cores (or even GPUs, if needed), ensuring that the data
pipeline can keep pace with the training process. This concurrent pro-
cessing minimizes idle time on the GPUs.

Below is an example of how on-the-fly tokenization might be integrated into
a PyTorch data pipeline using HuggingFace Datasets:

from datasets import load_dataset
from deepseek_tokenizer import DeepSeekTokenizer # a lightweight tokenizer
import torch

tokenizer = DeepSeekTokenizer() # instantiate the DeepSeek tokenizer
dataset = load_dataset('text', data_files={'train': 'my_corpus.txt'})['train']

def process_example (example) :
text = example['text']
tokens = tokenizer.encode(text)
# Apply dynamic splitting if needed
return {'tokens': tokens}

# Tokenize each example on the fly and remove rTaw text column
dataset = dataset.map(process_example, remove_columns=['text'], batched=False)

def collate_fn(batch):
# Batch is a list of dicts containing 'tokens'
max_len = max(len(item['tokens']) for item in batch)
# Pad sequences to the length of the longest sequence in the batch
input_ids = [item['tokens'] + [tokenizer.pad_id] * (max_len - len(item['tokens'
)
for item in batch]
return {'input_ids': torch.tensor(input_ids, dtype=torch.long)}

loader = torch.utils.data.Dataloader(dataset, batch_size=8, collate_fn=collate_fn)
for batch in loader:

input_ids = batch['input_ids'].to('cuda')

outputs = model(input_ids)

# Training loop continues...

In this example, the raw text is tokenized as each example is loaded, and the
resulting tokens are immediately processed by a custom collate function. This
on-the-fly approach reduces preprocessing latency and keeps the data pipeline
flexible and efficient.

DeepSeek s data preprocessing and augmentation pipelines are engineered for
both quality and scalability. Dynamic document splitting ensures that training
samples retain coherent context, while on-the-fly tokenization minimizes stor-
age requirements and adapts dynamically to the training process. Together,
these strategies enable DeepSeek models to learn from trillions of tokens ef-
ficiently and effectively, without the data pipeline becoming a performance
bottleneck.
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8.6 Optimization Example: Pretraining
DeepSeek-R1

In this section, we present a detailed walkthrough of the pretraining work-
flow for DeepSeek -R1, a 671B-parameter, reasoning-optimized Mixture-
of-Experts (MoE) model (with roughly 37B active parameters per token).
DeepSeek-R1 is trained on a diverse corpus that includes general text, mathe-
matics, and code. In this example, we focus on the massive distributed training
phase that integrates all the innovations discussed in earlier sectionsnamely,
advanced MoE design, dynamic position encoding, memory-efficient atten-
tion mechanisms, multi-dimensional parallelism, and high-throughput data
pipelines.

Step 1: Environment Setup and Parallel Configuration

Pretraining DeepSeek-R1 requires a large-scale distributed setup. For illus-
tration, consider a cluster with 1024 GPUs across 128 nodes. Our training
configuration uses:

 8-way Pipeline Parallelism (via DualPipe),
¢ 64-way Expert Parallelism (via DeepEP), and

* 2-way Data Parallelism.

Thus, the total number of processes is 8 x 64 x 2 = 1024. The following pseu-
docode outlines the initialization of distributed groups using PyTorch with the
NCCL backend:

import torch
import torch.distributed as dist

dist.init_process_group(backend='nccl')
world_size = dist.get_world_size() # Should be 1024
rank = dist.get_rank()

# Define degrees of parallelism
pipeline_stages = 8
expert_parallel = 64

data_parallel = 2

assert world_size == pipeline_stages * expert_parallel * data_parallel

# Compute group indices (assuming rank ordering: pipeline, expert, then data
parallel)
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data_group_idx = rank // (pipeline_stages * expert_parallel)

pipeline_group_idx = (rank % (pipeline_stages * expert_parallel)) //
expert_parallel

expert_group_idx = rank % expert_parallel

# Create process groups for each parallel dimension
dp_group = dist.new_group(
ranks=[r for r in range(data_group_idx * pipeline_stages * expert_parallel,
(data_group_idx + 1) * pipeline_stages * expert_parallel)
]
)
pp_group = dist.new_group(
ranks=[r for r in range(data_group_idx * pipeline_stages * expert_parallel +
expert_group_idx,
(data_group_idx + 1) * pipeline_stages * expert_parallel
+ expert_group_idx,
expert_parallel)]
)
ep_group = dist.new_group(
ranks=[r for r in range(data_group_idx * pipeline_stages * expert_parallel +
pipeline_group_idx * expert_parallel,
data_group_idx * pipeline_stages * expert_parallel +
pipeline_group_idx * expert_parallel + expert_parallel)]

In this configuration:

* DP Group: Contains all ranks that are replicas in data parallel.

* PP Group: Contains ranks corresponding to the same pipeline stage
across expert shards.

e EP Group: Contains ranks within a pipeline stage that host different
experts.

Frameworks such as DeepSpeed or Megatron-LM typically manage these
groupings automatically based on a specified parallelism configuration.
Step 2: Model Initialization and Partitioning

DeepSeek -R1s architecture is built around 80 transformer layers with a hid-

den size of 7168. Every second layer is an MoE layer, with each MoE layer
containing 64 experts. Other key model settings include:

* 64 attention heads using Grouped-Query Attention (GQA) with 8 key/-
value groups,
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* Rotary Position Embeddings (RoPE) with a decoupled configuration,
* Memory-efficient attention via FlashAttention, and

* A maximum training context of 4096 tokens (with plans to gradually
extend this to longer contexts).

A simplified model configuration and initialization might be:

from deepseek import DeepSeekConfig, DeepSeekModel

config = DeepSeekConfig(
num_layers=80,
d_model=7168,
num_heads=64,
rope=True,
rope_decoupled=True,
max_position_embeddings=4096,
moe_layers=[1, 3, 5, ..., 79],
num_experts=64,
expert_ffn_dim=28672, # e.g., 4z d_model
gating_top_k=2,
use_gqa=True,
num_key_value_groups=8,
use_flash_attn=True

)

model = DeepSeekModel (config)

Given the 8-way pipeline parallelism, the 80 transformer layers are split into
8 stages (10 layers per stage). Each process corresponding to a pipeline stage
holds its assigned layers:

# Assume model.transformer_layers is a list of all transformer layers.
my_pipeline_idx = pipeline_group_idx # from distributed setup

my_layers = model.transformer_layers[my_pipeline_idx*10 : (my_pipeline_idx+1)*10]
model_stage = torch.nn.Sequential (*my_layers) .to(device)

For MoE layers, expert parallelism ensures that the 64 experts are sharded
across the 64 GPUs in the expert group (each GPU hosting one expert for that
layer). The DeepEP library handles the all-to-all communication necessary to
dispatch tokens to the appropriate experts and gather the outputs efficiently.

Step 3: Data Loading and Preprocessing
DeepSeek -R1 is pretrained on a diverse corpus, which includes text, code,

and math content. The data pipeline employs dynamic document splitting and
on-the-fly tokenization to generate sequences of 4096 tokens. Each process
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reads its own shard of the data to avoid duplication. For example, using an
IterableDataset:

from torch.utils.data import Dataloader, IterableDataset

class TextDataset(IterableDataset):
def __iter__(self):
# Each rank reads its own data shard (e.g., based on rank)
with open(f"data_shard_{rank}.txt", "r") as file:
for doc in file:
tokens = tokenizer.encode(doc.strip())
# Split tokens into chunks of max_length (e.g., 4096)
start = 0
while start < len(tokens):
yield torch.tensor(tokens[start:start+4096], dtype=torch.long)
start += 4096

dataset = TextDataset()
loader = Dataloader(dataset, batch_size=1) # One sequence per iteration per worker

This approach ensures that raw text is tokenized and split dynamically, pre-
serving document coherence and maximizing data throughput.

Step 4: Training Loop and Pipeline Execution

Once the model and data loader are set up, the training loop orchestrates for-
ward and backward passes across the distributed pipeline. Using a pipeline
parallelism engine (e.g., DeepSpeeds PipelineModule), micro-batches are pro-
cessed in an overlapping manner. For instance:

engine, optimizer, _, _ = deepspeed.initialize(
model=model, model_parameters=model.parameters(), config=ds_config

)

for batch in loader:
# The engine splits the input into micro-batches internally (e.g., 8 chunks)
loss = engine(batch['input_ids'], labels=batch['input_ids'])
engine.backward(loss)
engine.step()

Under the hood, the following operations occur:

* Forward Pass: Each pipeline stage processes its chunk of layers. Ac-
tivations are sent between stages using efficient communication primi-
tives.

* MoE Dispatch and Expert Parallelism: At MoE layers, DeepEP han-
dles the dispatch of tokens to experts across the expert group and gathers
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their outputs, using FP8 for efficient low-precision transfers.

* Backward Pass: Using DualPipe scheduling, forward and backward
passes are overlapped so that each stage remains busy. Gradients are
communicated back through the pipeline.

A simplified pseudocode example for manual pipeline execution (without us-
ing a high-level library) might look like this:

# On rank corresponding to stage 0:

if pipeline_group_idx ==
out_stage0 = stageO_model(batch) # forward pass through stage 0
dist.send(out_stage0, dst=next_stage_rank, group=pp_group)

# On intermediate stages:

if O < pipeline_group_idx < pipeline_stages - 1:
activations = torch.empty(..., device=device)
dist.recv(activations, src=prev_stage_rank, group=pp_group)
out_stage = stage_model(activations)
dist.send(out_stage, dst=next_stage_rank, group=pp_group)

# On last stage:

if pipeline_group_idx == pipeline_stages - 1:
activations = torch.empty(..., device=device)
dist.recv(activations, src=prev_stage_rank, group=pp_group)
logits = stage_model(activations)
loss = loss_fn(logits, labels)
loss.backward()
# Gradients flow back through the pipeline in a similar manner.

While the above pseudocode simplifies the intricate orchestration, actual im-
plementations rely on libraries like DeepSpeed or Megatron-LM to manage
the overlapping and communication efficiently.

Step 5: Checkpointing and Monitoring

Regular checkpointing is essential in such large-scale training. Each process
saves its local parameters (including its pipeline and MoE weights) to disk.
Frameworks like DeepSpeed offer built-in checkpointing that aggregates these
shards into a coherent model state. Additionally, validation metricssuch as
perplexity or accuracy on specialized benchmarksare computed periodically
using a similar distributed pipeline setup.

Pretraining DeepSeek-R1 is a tour de force of modern distributed training tech-
niques. By combining:

* MOoE layers for massive capacity with sparse activation,
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* Advanced position encoding and memory-efficient attention (FlashAt-
tention and GQA),

* Multi-dimensional parallelism (pipeline parallelism via DualPipe, ex-
pert parallelism via DeepEP, and data parallelism), and

« Efficient data preprocessing with dynamic splitting and on-the-fly to-
kenization,

DeepSeek -R1 is trained on 1024 GPUs with nearly perfect hardware utiliza-
tion, significantly reducing training time and cost. This integrated approach
allowed DeepSeek-R1 to achieve remarkable performance on tasks such as
mathematical reasoning and code generation, even before subsequent rein-
forcement learning fine-tuning. For researchers and developers, the DeepSeek-
R1 pretraining example provides a blueprint for orchestrating state-of-the-art
model training across large-scale clusters, leveraging open-source frameworks
and innovative parallelism strategies to push the boundaries of what is com-
putationally feasible.
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Chapter 9

Deployment and Inference
Optimization for DeepSeek
Models

Once large-scale models like DeepSeek’s transformers and Mixture-of-
Experts (MoE) architectures have been trained, the next challenge is to deploy
them efficiently in production. In this chapter, we describe the techniques
that enable low-latency inference, scalable serving, and resource-efficient
execution. DeepSeek’s deployment pipeline combines optimized inference
kernels, streaming inference strategies, dynamic expert caching, and
distributed inference across heterogeneous hardware to ensure that even
models with hundreds of billions of parameters deliver high throughput and
sub-second response times.

9.1 Inference Optimization Techniques

DeepSeek s deployment and inference optimizations form a comprehensive
strategy for bringing massive models into production. Through highly op-
timized inference kernels, efficient streaming and distributed inference, in-
telligent expert caching, and support for heterogeneous hardware, DeepSeek
achieves high throughput and low latencyeven for models with hundreds of
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billions of parameters. These innovations enable real-world applications such
as real-time code generation and interactive conversational Al, ensuring that
advanced models are not just research prototypes but practical tools deploy-
able across a range of environments.

Optimized Inference Kernels

At inference time, every millisecond counts. DeepSeek employs a suite of
highly optimized GPU kernels specifically tuned for modern architectures
such as NVIDIA Hopper and Ampere. Key optimizations include:

* Fused Attention Kernels: Multi-head attention operations are fused
into single, highly efficient GPU kernels. By combining operations
that traditionally required multiple separate kernel launches, redundant
memory loads are minimized and overhead is reduced.

¢ Quantized Matrix Multiplications: Selected layers leverage reduced
precision formats (e.g., FP8 or INTS) for matrix multiplications. This
quantization strikes a balance between speed and model accuracy, ac-
celerating computations while keeping error margins minimal.

* Streamed Key-Value Cache: In autoregressive decoding, key-value
caches are stored in high-speed GPU memory. These caches are up-
dated incrementally and reused across tokens to avoid redundant compu-
tations and to ensure that previously computed states remain available.

Together, these optimizations drastically reduce latency and maximize token
throughput during inference, even for models with hundreds of billions of pa-
rameters.

Efficient Streaming Inference
For real-time applications such as code generation or conversational Al, gener-

ating tokens one-by-one with minimal delay is critical. DeepSeeks streaming
inference mode is designed with the following principles:

1. Bulk Prompt Processing: The model first processes the prompt in a
single, bulk forward pass to establish initial key-value caches.
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2. Incremental Forward Passes: New tokens are generated through a
lightweight, incremental forward pass that updates only the most recent
cache entries, avoiding full recomputation.

3. Cached Expert Routing: For MoE layers, the gating decisions for ex-
perts are cached when possible, so that the model avoids recomputing
routing for static portions of the prompt.

This design minimizes per-token latency by overlapping communication, com-
putation, and cache updates, ensuring that the system can generate coherent
text in real time.

Expert Caching and Lazy Loading

MoE models selectively activate only a subset of experts for each input.
DeepSeeks deployment pipeline takes advantage of this sparsity by implement-

ing:

* Expert Caching: Frequently accessed experts are kept resident in GPU
memory to reduce loading delays. This is particularly beneficial for
domains with repetitive content, such as common programming lan-
guages.

* Lazy Expert Loading: For experts that are rarely used, parameters
are loaded from disk or offloaded to slower memory tiers only when
required. This dynamic management of expert modules reduces overall

memory pressure while ensuring that critical experts are always avail-
able.

Through these techniques, DeepSeek efficiently serves large MoE models on

clusters with limited GPU memory, balancing responsiveness with resource
constraints.

9.2 Distributed Inference Across Multi-GPU
Nodes

DeepSeek models often exceed the capacity of a single GPU, necessitating dis-
tributed inference across multiple devices. The inference pipeline is designed
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to prioritize low latency through:

* Asynchronous Prefetching: Subsequent layers are preloaded onto
neighboring GPUs while the current layer is processing the input. This
minimizes wait times during inter-GPU transfers.

¢ Overlapped Communication: Activation transfers between GPUs are
scheduled concurrently with local computations, ensuring continuous
utilization of compute resources.

« Adaptive Batch Sizing: Batch sizes are dynamically adjusted based on
live traffic, striking a balance between high throughput and low response
times.

These strategies, which resemble training parallelism techniques (like pipeline
and tensor parallelism), are carefully tuned for inference so that interactive
requests are served with minimal delay.

Support for Heterogeneous Hardware

While DeepSeek models are primarily trained on high-end GPUs, deployment
environments are often heterogeneous. DeepSeeks inference stack is designed
to run efficiently across various platforms:

* CUDA and ROCm Backends: Optimized kernels are provided for
both NVIDIA and AMD GPUgs, ensuring broad compatibility.

* CPU Fallback Path: For smaller models or edge deployments, a highly
optimized CPU inference engine is available, leveraging AVX512 or
ARM Neon instructions.

* ONNX Export: Models can be exported to the ONNX format for use
with third-party inference engines, facilitating deployment across cloud
services, on-premises clusters, and even mobile devices.

This flexibility allows DeepSeek models to be deployed in diverse environ-
ments, from cloud-based APIs to embedded systems.
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Example: Real-Time Code Generation Service

To illustrate the practical application of these techniques, consider the real-
time code generation service provided by DeepSeek-Coder. This service in-
tegrates multiple inference optimizations to deliver sub-second responses for
code snippets:

1. Request Handling: A lightweight REST gateway receives incoming
code generation requests. It preprocesses prompts and performs initial
tokenization.

2. Distributed Inference: The preprocessed request is forwarded to a dis-
tributed DeepSeek-Coder instance. This instance leverages pipeline and
tensor parallelism to handle autoregressive decoding efficiently.

3. Expert Caching: Common programming language experts (e.g., those
specializing in Python or JavaScript) are preloaded in GPU memory,
ensuring rapid processing without repeated gating computations.

4. Streaming Generation: The system processes the prompt in bulk to
build key-value caches, then generates tokens incrementally using a
streamlined forward pass. Partial responses are streamed back to the
user as soon as available.

5. Post-Processing: The generated tokens are reassembled into well-
formatted code blocks, which are then returned to the user for display
or execution.

This multi-stage pipeline ensures that typical code generation requests experi-
ence minimal latency, even when the underlying model contains hundreds of
billions of parameters.

9.3 Efficient Model Quantization

Efficient model quantization is a critical optimization for deploying large lan-
guage models like DeepSeek, as it can dramatically accelerate inference and
reduce memory usage. By reducing the numerical precision of weights and
activations, quantization leverages lower-bit arithmetic to compress models
without a significant drop in accuracy. In DeepSeek models, both FP8 (8-bit
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floating point) and INT4 (4-bit integer) quantization play important roles. This
section explores how these methods are appliedboth during training through
quantization-aware training (QAT) and after training via post-training quan-
tization (PTQ)and discusses the trade-offs between model accuracy and effi-
ciency.

Role of FP8 and INT4 Quantization

Lowering the numerical precision of model parameters and activations can
lead to considerable reductions in memory footprint and computational cost:

* FP8 Precision (E4M3/E5M2): This format uses only 8 bits to represent
numbers (with 1 sign bit, 4 or 5 exponent bits, and 2 or 3 mantissa bits).
DeepSeeks FP8 mixed-precision framework employs FP8 arithmetic for
operations such as matrix multiplications and caching activations. The
careful selection of FP8 operationswhile maintaining critical computa-
tions (e.g., attention and normalization) in higher precision like BF16
or FP32ensures both speed and numerical stability.

e INT4 Quantization: Typically used for weight-only quantization,
INT4 reduces model weights to 4-bit fixed-point integers. This can
compress the weight storage by up to 8 compared to FP32, enabling
the deployment of massive models on hardware with limited memory.
Deployment frameworks such as TensorRT-LLM have demonstrated
the practical feasibility of INT4 quantized checkpoints with minimal
accuracy loss.

The benefits of these techniques are twofold:

* Latency and Throughput Improvements: Smaller models mean
faster data movement and more efficient use of cache, often the limiting
factor in inference speed. On NVIDIA H100 GPUs, FP8 kernels can
achieve up to 3 throughput improvements over FP16 or BF16, while
INT4 weight quantization can unlock significant speedups by enabling
accelerated 4-bit Tensor Core operations.

* Reduced Memory Footprint: A lower-bit representation directly trans-
lates to lower GPU VRAM usage. This reduction is particularly impor-
tant when serving very large models or when deploying on resource-
constrained devices.
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Quantization-Aware Training (QAT) in PyTorch

Quantization-aware training (QAT) simulates the effects of quantization dur-
ing training, allowing the model to adapt to lower precision and maintain
higher accuracy. PyTorch provides native support for QAT via fake quan-
tization modules. Below is an example of how one might apply QAT to a
DeepSeek transformer block:

import torch
import torch.quantization as tq

# Assume 'model' is an instance of a DeepSeek transformer block

model.eval() # Set the model to evaluation mode for static quantization preparation
# Define a QAT configuration (here using the 'fbgemm' backend)

qat_config = tq.get_default_qat_qconfig('fbgemm')

model.qconfig = qat_config

# Prepare the model for quantization-aware training by inserting fake quantization
modules
tq.prepare_qgat (model, inplace=True)

# Fine-tune the model for a few epochs to adapt to quantization
optimizer = torch.optim.Adam(model.parameters(), lr=1e-5)
for epoch in range(2):
for inputs, targets in train_loader:
optimizer.zero_grad()
outputs = model (inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()

# Convert the model to a fully quantized version (e.g., with INT8 weights)
model_int8 = tq.convert(model.eval(), inplace=False)

In this workflow, the model is initially prepared for QAT, then fine-tuned so
that the network learns to mitigate quantization errors. Once the QAT phase
is complete, the model is converted to a quantized version suitable for efficient
inference.

Post-Training Quantization (PTQ) in PyTorch

As an alternative to QAT, post-training quantization (PTQ) is a one-shot
approach applied to a pre-trained model. PTQ uses calibration data to
determine optimal scaling factors for weights and activations. PyTorchs
torch.quantization.quantize_dynamic function is commonly used to perform dy-
namic quantization on linear layers. Here is an example of static PTQ for a
DeepSeek model:
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import torch.quantization as tq

# Set the model to evaluation mode and assign a static quantization configuration
model.eval()
model.qconfig = tq.default_static_qconfig

# Prepare the model for quantization (inserting observers to collect statistics)
tq.prepare(model, inplace=True)

# Calibrate the model using a representative calibration dataset
with torch.no_grad():
for inputs, _ in calibration_loader:
_ = model (inputs)

# Convert the model to its quantized form, which quantizes weights to INT8
model_int8 = tq.convert(model, inplace=False)

PTQ is simpler to apply since it requires no additional training, but it often
results in a slightly higher accuracy degradation compared to QAT. Recent
advances like SmoothQuant and GPTQ have been proposed to minimize these
losses further.

Accuracy vs. Efficiency Trade-Offs

Both QAT and PTQ offer significant efficiency gains at the expense of some
accuracy. QAT generally preserves more of the original model accuracy by
simulating quantization during training, whereas PTQ is easier to apply but
may incur a larger accuracy drop. The choice of quantization schemewhether
FP8 for mixed precision or INT4 for weight-only quantizationshould be based
on the specific requirements of your application. The goal is to choose the
lowest precision that still maintains acceptable accuracy while maximizing
throughput and reducing memory usage.

Efficient model quantization, through techniques like FP8 and INT4, is key to
accelerating inference and reducing the memory footprint of DeepSeek mod-
els. By employing QAT or PTQ, practitioners can strike a balance between
model accuracy and efficiency, enabling the deployment of massive models on
a wide range of hardware platforms. The examples provided illustrate practi-
cal ways to integrate quantization into a PyTorch workflow, ensuring that large
models remain both performant and resource-efficient in production.
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9.4 Optimized Serving with TensorRT and
FasterTransformer

To achieve low-latency inference and fully leverage GPU hardware, DeepSeek
models can be deployed using specialized inference frameworks such as
NVIDIA TensorRT and FasterTransformer. These frameworks provide
highly optimized CUDA kernels, support for lower precision (e.g., INT8, FP8),
and advanced multi-threading capabilities, enabling rapid, scalable inference
for even the most complex models.

Hardware-Optimized Inference Frameworks

NVIDIA TensorRT is a deep learning inference SDK that transforms neural
network models into highly optimized runtime engines for NVIDIA GPUs. Its
main features include:

* Layer and Tensor Fusion: Combining multiple operations into a sin-
gle kernel to reduce memory bandwidth usage.

* Automatic Mixed Precision: Automatically optimizing operations for
FP16 or INTS, with calibration routines to maintain accuracy.

* Engine Builder: Generating a serialized engine tailored to the target
hardware, which can be deployed in production.

FasterTransformer is an open-source library providing C++/CUDA imple-
mentations of transformer blocks specifically designed for high-speed infer-
ence. It offers:

* Highly optimized multi-head attention, layer normalization, and decod-
ing routines.

* Support for custom optimizations such as fused attention kernels and
quantized computations.

* Integration with frameworks like Hugging Face Transformers or
TensorRT-LLM to directly support large language models.
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Both frameworks can leverage Tensor Cores for FP16/FP8 matrix multiplica-
tions and custom kernels (e.g., for fused Multi-Head Attention) and can utilize
batching and stream-based execution to further accelerate inference.

Converting DeepSeek Models to TensorRT

Converting a DeepSeek PyTorch model to TensorRT typically involves ex-
porting the model to ONNX and then using TensorRTs builder to create an
optimized engine. The process can be summarized as follows:

1. EXpOI‘t to ONNX: Use torch.onnx.export OI the models forward
method, providing dummy inputs with an appropriate sequence length.
Custom operations (like MLA) may require custom ONNX operators
or the use of TensorRT-LLM which supports certain LLM architectures
natively.

2. Build the TensorRT Engine: Use the trtexec CLI or the Python API to
load the ONNX model and build an engine with desired optimizations
such as FP16 or INTS precision.

For example, the following Python code snippet demonstrates building a Ten-
sorRT engine with FP16 precision:

import temsorrt as trt

onnx_model = "deepseek.onnx"
engine_file = "deepseek.plan"
logger = trt.Logger(trt.Logger.INFO)
builder trt.Builder(logger)
network builder.create_network(1l << int(trt.NetworkDefinitionCreationFlag.
EXPLICIT_BATCH))
parser = trt.OnnxParser(network, logger)
with open(onnx_model, "rb") as f:
parser.parse(f.read())

# Configure builder settings

config = builder.create_builder_config()
config.max_workspace_size = 1 << 30 # 1GB workspace
config.set_flag(trt.BuilderFlag.FP16)

# Optionally, enable INT8 calibration:

# config.set_flag(trt.BuilderFlag.INT8)

# config.int8_calibrator = MyCalibrator()

# Build and serialize the engine

engine = builder.build_engine(network, config)

with open(engine_file, "wb") as f:
f.write(engine.serialize())
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TensorRT-LLM simplifies this process further by providing scripts that di-
rectly convert DeepSeek-V2/V3 models into optimized engines with support
for FP8 and INT4 quantization.

Verification and Deployment

Once the TensorRT engine is built, it can be deployed using either C++ or
Python. For example, the following Python code demonstrates running infer-
ence on the engine:

import numpy as np
import pycuda.driver as cuda
import pycuda.autoinit

# Load the engine and create an exzecution context
runtime = trt.Runtime(logger)
with open("deepseek.plan", "rb") as f:

engine = runtime.deserialize_cuda_engine(f.read())
context = engine.create_execution_context()

# Prepare input and output buffers

input_shape = engine.get_binding_shape (0)

output_shape = engine.get_binding_shape (1)

d_input = cuda.mem_alloc(np.prod(input_shape) * np.float16().nbytes)
d_output = cuda.mem_alloc(np.prod(output_shape) * np.float16() .nbytes)

# Prepare a dummy input (e.g., token IDs) and exzecute inference

host_input = np.random.randint(0, 50257, size=input_shape, dtype=np.int32)
cuda.memcpy_htod(d_input, host_input)
context.execute_v2(bindings=[int(d_input), int(d_output)])

host_output = np.empty(output_shape, dtype=np.floatl6)
cuda.memcpy_dtoh(host_output, d_output)

print ("Next token logits:", host_output)

This skeleton can be integrated into a production serving pipeline that contin-
uously generates tokens in a loop for autoregressive tasks.

CUDA-based Optimizations with FasterTransformer

For even higher performance, FasterTransformer offers its own highly opti-
mized transformer implementations. Using FasterTransformer, one typically:

» Converts model weights into FasterTransformers internal format (often
using provided conversion scripts).

* Uses the FasterTransformer GPT interface to perform fast decoding with
optimized multi-head attention and layer norm operations.
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* Leverages GPU-specific optimizations, including half-precision compu-
tations and fused operations.

A brief example using FasterTransformers PyTorch integration might look like
this:

from transformers import AutoTokenizer
from faster_transformer import FasterTransformerGPT

tokenizer = AutoTokenizer.from_pretrained("deepseek-v3")

ft_model = FasterTransformerGPT.from_pretrained("deepseek-v3",
tensor_para_size=1, pipeline_para_size=1)

input_ids = tokenizer("Hello, DeepSeek!", return_tensors="pt").input_ids

output = ft_model.generate(input_ids, max_new_tokens=50, do_samp1e=False)

print (tokenizer.decode (output [0]))

This example illustrates how FasterTransformer can be employed for rapid text
generation, leveraging its custom CUDA kernels and optimized data flows.

By converting DeepSeek models to optimized inference engines using
NVIDIA TensorRT or FasterTransformer, one can achieve extremely low
latency and high throughput. These frameworks exploit advanced GPU
featuressuch as Tensor Cores, fused operations, and efficient quantizationto
accelerate the forward pass. The conversion process typically involves
exporting the model to ONNX, building a tailored engine with precision
flags, and verifying performance through test inference. Such optimizations
are essential for serving large-scale models in production, ensuring that
real-time applications, like interactive code generation or conversational Al,
operate at peak efficiency.

9.5 Distributed Inference Scaling

Deploying large DeepSeek models, which often consist of tens or hundreds of
billions of parameters (especially in MoE configurations), requires distribut-
ing inference across multiple GPUs or even across multiple nodes. This sec-
tion outlines strategies for achieving scalable, low-latency inference by com-
bining multi-GPU and multi-node techniques, load balancing for concurrent
requests, and specialized expert-parallel methods for MoE layers. We also pro-
vide an example using PyTorch and DeepSpeeds Inference Engine to illustrate
multi-GPU serving.
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Multi-GPU Inference Techniques

When the model size or throughput requirements exceed the capacity of a
single GPU, various forms of parallelism are employed:

Tensor Parallelism (TP): In tensor parallelism, the models weight ma-
trices (e.g., those in linear layers) are split across multiple GPUs. Each
GPU computes a portion of the overall operation, and the results are
combined to form the final output. Frameworks such as DeepSpeed-
Inference and Megatron-LM provide transparent TP, where the degree
of parallelism (e.g., 2-way or 4-way) is chosen based on available hard-
ware and memory constraints.

Pipeline Parallelism (PP): Pipeline parallelism divides the models lay-
ers into sequential stages that reside on different GPUs. Although se-
quential processing can introduce idle bubbles due to autoregressive
dependencies, these can be mitigated by micro-batching or combining
with TP to keep all stages busy.

Sequence Parallelism: This approach splits the input sequence itself
across devices and is more commonly used during training for very long
sequences. For inference, its utility is more limited compared to TP or
PP.

Expert Parallelism for MoE: In Mixture-of-Experts layers, only a few
experts are activated per token. With expert parallelism, the experts
are partitioned across GPUs so that each device only hosts a subset of
experts. For instance, if a MoE layer has 128 experts and the system
uses 8 GPUs, each GPU might host 16 experts. During inference, the
gating network selects the top-k experts for each token, and the token
representations are routed to the GPUs holding those experts.

In many deployments, TP and PP are combined (e.g., 2-way TP with 2-stage
PP to use 4 GPUs) to maximize resource utilization. Expert parallelism is
handled by specialized libraries (such as FastMoE or custom router imple-
mentations) that manage the dynamic routing of tokens to experts.
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Multi-Node Inference and Load Balancing

For models that cannot be contained on a single server, multi-node inference
becomes essential. Two primary strategies are used:

¢ Model Parallel Inference: The model is partitioned across nodes using
model parallelism techniques (e.g., TP and PP) with high-speed inter-
connects such as NVIDIA NCCL over InfiniBand.

* Data Parallel Inference: Separate instances of the model are run on dif-
ferent nodes, and a load balancer distributes incoming requests among
these instances to optimize throughput and response time.

When serving multiple concurrent requests, an external load balancer ensures
that work is evenly distributed across GPUs or nodes. This is especially im-
portant for MoE models where some experts may be more popular than others.
DeepSeek-V3 employs an auxiliary-loss-free load balancing strategy during
training to encourage even expert utilization. At inference, dynamic routing
can further help avoid overloading any single GPU.

Example: Multi-GPU Inference with DeepSpeed

The following example demonstrates how to deploy a DeepSeek model using
DeepSpeeds Inference Engine with tensor parallelism across multiple GPUs:

import torch
import deepspeed
from transformers import AutoModelForCausallM, AutoTokenizer

model_name = "deepseek-v3"

tokenizer = AutoTokenizer.from_pretrained(model_name)

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.floatl16
)

# Move the model to CPU first to avoid GPU memory overflow before partitioning
model.to('cpu')

# Initialize DeepSpeed Inference Engine with 4-way tensor parallelism
ds_engine = deepspeed.init_inference(
model,
mp_size=4, # Tensor parallelism: split model across 4 GPUs
dtype=torch.half,
replace_with_kernel_inject=True
)

model = ds_engine.module # The model ts now partitioned and optimized
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# Prepare input and generate text

input_text = "DeepSeek models achieve remarkable efficiency through"
inputs = tokenizer(input_text, return_tensors='pt').to(0) # Send to GPU 0
outputs = model.generate (**inputs, max_new_tokens=40, do_sample=False)
print (tokenizer.decode (outputs[0]))

In this script, DeepSpeed partitions the model across 4 GPUs, injecting opti-
mized kernels (e.g., fused attention operations) for accelerated inference. The
DeepSpeed Inference Engine automatically manages cross-GPU communica-
tion, ensuring that the generated tokens are assembled correctly.

For multi-node inference, the script can be launched with a multi-node
launcher (such as torchrun or DeepSpeeds CLI) using environment variables
like worLp_s1zE to coordinate processes across nodes.

Scaling inference for DeepSeek models requires a careful blend of model
parallelism techniques and robust load balancing. By employing tensor and
pipeline parallelism (and expert parallelism for MoE layers), distributed in-
ference can meet both latency and memory constraints across multiple GPUs
and nodes. Frameworks like DeepSpeed simplify this process by automating
the partitioning and optimized communication, enabling the deployment of
state-of-the-art models even in high-throughput, low-latency production envi-
ronments.

9.6 Streaming and Low-Latency Techniques

Real-time applications such as live chat and interactive assistants demand ex-
tremely low latency during inference. To meet these requirements, DeepSeeks
deployment pipeline incorporates several advanced strategies that reduce wait-
ing time for users while maintaining high throughput under heavy load. In this
section, we detail methods including speculative decoding, prefix caching,
continuous batching, and parallel samplingeach designed to accelerate to-
ken generation without compromising output quality.

Speculative Decoding
Speculative decoding is an effective method to speed up autoregressive gener-
ation by leveraging a smaller, faster draft model to propose multiple tokens in

advance. The process involves:
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* Running a lightweight draft model (e.g., a 1B parameter distilled ver-
sion) that rapidly generates a short sequence of tokens.

* Conditioning the full DeepSeek model on the first token and verifying
if its predictions align with the drafts proposal.

* Accepting the entire block of tokens if they match, or otherwise revert-
ing to the DeepSeek models output at the point of divergence.

This method can nearly double the speed of token generation when the draft
model frequently yields valid proposals. A simplified pseudocode outline is
provided below:

# Initialize models
draft_model = AutoModelForCausallLM.from_pretrained("smaller_model")
main_model = AutoModelForCausalLM.from_pretrained(" DeepSeek -v3")

input_ids = tokenizer(prompt, return_tensors='pt').input_ids

# Obtain initial logits from the main model
outputs = main_model (input_ids)

while not finished:

# Draft model generates N tokens quickly

draft_tokens = []

for _ in range(N):
draft_logits = draft_model (input_ids)
draft_next = sample_from_logits(draft_logits)
draft_tokens.append(draft_next)
input_ids = torch.cat([input_ids, draft_next], dim=-1)

# Main model verifies the draft in one forward pass
outputs = main_model (input_ids)
match_len = compute_match(outputs.logits, draft_tokens)

# Accept the matching tokens and adjust input_ids accordingly
result.extend(draft_tokens[:match_len])
if match_len < len(draft_tokens):
true_token = torch.argmax(outputs.logits[..., -1, :], dim=-1)
input_ids = torch.cat([input_ids[:-len(draft_tokens)], true_token], dim=-1)
result.append(true_token)

Prefix Caching and Continuous Batching

Prefix caching is particularly beneficial when multiple inference requests
share a common initial prompt. By computing the key-value (KV) cache for
this shared prefix only once and reusing it across requests, the system avoids re-
dundant computation and accelerates subsequent decoding. Modern systems
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such as vLLM implement this by maintaining a cache mapping of prefixes to
KV states, which is periodically pruned based on usage.

In tandem, continuous batching (or dynamic batching) aggregates incom-
ing requests in short time windows (e.g., every 10 ms) to form a batch. This
technique minimizes latency by rapidly grouping pending requests, enabling
the model to process several sequences in parallel without waiting for a large,
fixed batch size. Continuous batching ensures that even with variable arrival
rates, the GPU remains fully utilized.

Parallel Sampling and Token Merging

To further reduce latency, parallel sampling techniques allow the system to
generate multiple candidate tokens simultaneously. For instance, by sampling
the top-k candidates in parallel, the model can quickly decide whether to ac-
cept a group of tokens or re-sample when confidence is high. This method is
akin to speculative decoding, but without employing a separate draft model,
instead relying on vectorized operations on the GPU. The following example
demonstrates a simple approach to parallel sampling:

# Compute logits for the next token

logits = model(input_ids).logits[:, -1, :] # shape: (batch, vocab)
probs = torch.softmax(logits, dim=-1)

topk_prob, topk_idx = torch.topk(probs, k=3, dim=-1) # Top-3 candidates

# Create multiple continuations for each candidate

branches = []

for i in range(topk_idx.size(1)):
new_input = torch.cat([input_ids, topk_idx[:, i].unsqueeze(-1)], dim=-1)
branches. append (new_input)

# Process branches in parallel to decide the best continuation

Such parallel sampling can be integrated with token merging strategies, where
multiple tokens are generated in a single forward pass by unrolling the trans-
former several steps, thereby reducing the number of expensive inference calls.

In summary, DeepSeeks streaming and low-latency techniques are designed
to minimize the delay in generating tokens for real-time applications. By:

» Leveraging speculative decoding to potentially accept multiple tokens
per forward pass,

» Caching common prefixes to avoid redundant computations,
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 Continuously batching incoming requests to maximize GPU utilization,
and

* Employing parallel sampling strategies to reduce tail latency,

the inference pipeline achieves both high throughput and low per-token latency.
These optimizations ensure that interactive applications, such as live chat or
code generation, can deliver prompt and coherent responses even under heavy
load.

9.7 Efficient Deployment on Cloud and Edge De-
vices

Deploying DeepSeek models into production requires a balance of raw infer-
ence speed, robust performance, and scalability across various hardware plat-
forms. Whether running on cloud GPU servers or on resource-constrained
edge devices, careful optimization and packaging are key. In this section,
we describe best practices for containerizing and serving DeepSeek models
using industry-standard frameworks such as NVIDIA Triton Inference Server
and ONNX Runtime, and we discuss optimizations tailored for both cloud and
edge deployments.

Containerized Model Serving with Triton and ONNX Run-
time

Leveraging a standardized inference server simplifies deployment and helps
manage critical tasks like dynamic batching, model versioning, and scaling.
Two popular options are:

e NVIDIA Triton Inference Server: This server supports multiple
frameworks (e.g., PyTorch, TensorRT, ONNX) within a single deploy-
ment. With Triton, you can:

— Convert DeepSeek models to an ONNX or TensorRT format.

— Organize models in a standardized repository structure with con-
figuration files to set parameters such as maximum batch size, dy-
namic batching policies, and optimization profiles for different se-
quence lengths.
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— Handle HTTP/gRPC requests efficiently, manage model ensem-
bles (for example, combining a preprocessing module with the
core model), and dynamically scale resources based on traffic.

¢ ONNX Runtime (ORT): As a cross-platform inference engine, ORT
offers robust support on CPUs, GPUs, and even in browser environ-
ments via WebAssembly. With specialized transformer optimizations
(such as graph fusion and mixed precision), ORT can run DeepSeek
models significantly faster than PyTorch. This makes it an excellent
choice for deployments that require portability or need to run on varied
hardware.

For example, to deploy a DeepSeek model with Triton, you would package
your model in a repository as follows:

model_repository/deepseek/1/model.onnx
model_repository/deepseek/config.pbtxt

A typical config.pbtxt might be:

name: "deepseek"
platform: "onnxruntime_onnx" # or "tensorrt_plan"” for TensorRT engines
max_batch_size: 8
input [
{
name: "input_ids"
data_type: TYPE_INT32
dims: [ -1 ] # dynamic sequence length
}
]
output [
{
name: "logits"
data_type: TYPE_FP32
dims: [ -1, $VOCAB_SIZE ]
}
]
instance_group [
{
kind: KIND_GPU
count: 1
gpus: [ 0]

]

dynamic_batching { max_queue_delay_microseconds: 10000 }

Triton, when deployed via Docker (e.g., fromnvcr.io/nvidia/tritonserver),
can then handle incoming requests and dynamically manage resources based
on load.
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Cloud GPU Serving Optimizations

For deployments on cloud GPUs (such as AWS EC2, Azure, or GCP), the
following optimizations are essential:

* Mixed Precision: Utilizing FP16 or BF16 for weights and computa-
tions allows you to double throughput by leveraging Tensor Cores.

* Autoscaling: Deploy your model on a platform (such as Kubernetes)
that automatically scales the number of serving replicas based on de-
mand.

* Resource Pinning and Affinity: Ensuring that GPUs are dedicated to
your inference process and that CPU threads are pinned to specific cores
minimizes context switching and maximizes performance.

* Model Compression for Transit: Use efficient storage formats (e.g.,
safetensors in half precision) to reduce model deployment times and
overhead.

For MoE models, additional strategies such as dedicated expert serving frame-
works can be employed, wherein the experts are distributed and managed
across nodes to balance load and reduce latency.

Edge Deployment for Resource-Constrained Environments

When deploying on edge devices (smartphones, Raspberry Pi, Jetson Nano,
etc.), the primary concerns are low power consumption and limited memory:

¢ Optimized Inference Engines: Use ONNX Runtime with NNAPI (An-
droid) or CoreML (Apple) to run models on mobile neural accelerators.

* Model Distillation and Quantization: Deploy smaller, distilled ver-
sions of DeepSeek (e.g., DeepSeek-R1-distill-1.5B) in INTS8 or lower
precision to fit within the limited memory of edge devices.

* Hardware Acceleration: Exploit any available on-device hardware ac-
celeration, whether via DSPs, NPUs, or GPUs.

For example, using ONNX Runtime on a Raspberry Pi might involve:
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import onnxruntime as ort
import numpy as np

sess_options = ort.SessionOptions()
sess_options.intra_op_num_threads = 1

session = ort.InferenceSession("deepseek_quant.onnx", sess_options)
input_ids = np.array([[101, 2023, 2003, 1037, ...]], dtype=np.int64)
outputs = session.run(["logits"], {"input_ids": input_ids})

print ("Logits:", outputs[0])

If the edge device includes a small GPU (e.g., NVIDIA Jetson), TensorRT
engines can be deployed similarly.

Best Practices Summary

* Cloud Deployments: Containerize your model using Triton or a cus-
tom server with DeepSpeed Inference. Optimize throughput with mixed
precision, dynamic batching, and autoscaling. Turnkey solutions such
as HuggingFaces TGI or vLLM can simplify this process.

* Edge Deployments: Focus on minimizing model size through distilla-
tion, quantization, and pruning. Use ONNX Runtime or TensorFlow
Lite to ensure portability, and leverage available hardware accelerators
for efficient inference.

* General Considerations: Monitor latency and memory usage to avoid
overloading the system. Implement fallbacks (such as a smaller model)
if the primary model is under heavy load, ensuring a robust, scalable
serving system.

By following these strategies, developers can deploy DeepSeek models in
production with confidence, ensuring they meet the necessary latency and
throughput requirements whether it’s a powerful cloud server or a small edge
device. The key is to combine model optimizations (quantization, efficient
caching) with system-level optimizations (container orchestration, hardware
acceleration) to achieve end-to-end efficiency.
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